Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Wazir H, Chay SY, Zarei M, Hussin FS, Mustapha NA, Wan Ibadullah WZ, et al.
    Antioxidants (Basel), 2019 Oct 16;8(10).
    PMID: 31623062 DOI: 10.3390/antiox8100486
    Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are complicated due to complex food system and slow lipid-protein oxidative deterioration. The current study evaluates the oxidative changes over six months of storage on shredded beef and chicken products (locally known as serunding) for physicochemical analysis, lipid oxidation (conjugated dienes and malondialdehydes) and protein co-oxidation (soluble protein content, amino acid composition, protein carbonyl, tryptophan loss and Schiff base fluorescence) at 25 °C, 40 °C and 60 °C. The lipid stability of chicken serunding was significantly lower than beef serunding, illustrated by higher conjugated dienes content and higher rate of malondialdehyde formation during storage. In terms of protein co-oxidation, chicken serunding with higher polyunsaturated fatty acids (PUFA) experienced more severe oxidation, as seen from lower protein solubility, higher protein carbonyl and Schiff base formation compared to beef serunding. To conclude, chicken serunding demonstrates lower lipid and protein stability and exhibits higher rate of lipid oxidation and protein co-oxidation than beef serunding. These findings provide insights on the progression of lipid oxidation and protein co-oxidation in cooked, shredded meat products and could be extrapolated to minimize possible adverse effects arising from lipid oxidation and protein co-oxidation, on the quality of low-moisture, high-lipid, high-protein foods.
  2. Che Zain MS, Lee SY, Sarian MN, Fakurazi S, Shaari K
    Antioxidants (Basel), 2020 Apr 17;9(4).
    PMID: 32316665 DOI: 10.3390/antiox9040326
    Oil palm (Elaeis guineensis Jacq.) leaves (OPL) are widely available at zero cost in Southeast Asia countries, especially in Malaysia and Indonesia due to large scale oil palm plantations. OPLs contain a large amount of flavonoids in particular flavonoid C-glycosides, which are known to possess useful biological properties including antioxidant and wound healing properties. The present study aimed at evaluating the wound healing efficacy of OPL in various solvent extracts and flavonoid enriched fractions and to determine the contribution of flavonoid C-glycosides (orientin, isoorientin, vitexin and isovitexin) using in-vitro scratch assay on 3T3 fibroblast cells. Solvent crude extracts with different polarity were screened and the most active extract was subjected to acid hydrolysis. The crude and acid hydrolysed extracts were further enriched using macroporous resins, XAD7HP. UHPLC-UV/PDA and LC-MS/MS analysis were applied for identification and confirmation of flavonoid C-glycosides. The wound healing properties comprised of cell viability, cell proliferation and cell migration were studied. Allantoin was used as a positive control to compare the efficacy among the tested samples. The results revealed all OPL crude extracts, flavonoid enriched fractions and flavonoid C-glycosides were non-toxic at concentrations below 25 µg/mL and showed better cell proliferation and migration activities at low concentrations than higher concentrations.. This study also demonstrated orientin, isoorientin, vitexin and isovitexin presented in OPL extracts and flavonoid enriched fractions stimulated proliferation and migration of 3T3 fibroblast cells. Hence, these findings may pose potential therapeutic bioactive agents for wound healing by enhancing fibroblast proliferation and migration.
  3. Tan JB, Yap WJ, Tan SY, Lim YY, Lee SM
    Antioxidants (Basel), 2014 Nov 17;3(4):758-69.
    PMID: 26785239 DOI: 10.3390/antiox3040758
    Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5-10 mg/mL based on the broth microdilution method.
  4. Anouar el H
    Antioxidants (Basel), 2014 Apr 21;3(2):309-22.
    PMID: 26784873 DOI: 10.3390/antiox3020309
    Phenolic Schiff bases are known as powerful antioxidants. To select the electronic, 2D and 3D descriptors responsible for the free radical scavenging ability of a series of 30 phenolic Schiff bases, a set of molecular descriptors were calculated by using B3P86 (Becke's three parameter hybrid functional with Perdew 86 correlation functional) combined with 6-31 + G(d,p) basis set (i.e., at the B3P86/6-31 + G(d,p) level of theory). The chemometric methods, simple and multiple linear regressions (SLR and MLR), principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce the dimensionality and to investigate the relationship between the calculated descriptors and the antioxidant activity. The results showed that the antioxidant activity mainly depends on the first and second bond dissociation enthalpies of phenolic hydroxyl groups, the dipole moment and the hydrophobicity descriptors. The antioxidant activity is inversely proportional to the main descriptors. The selected descriptors discriminate the Schiff bases into active and inactive antioxidants.
  5. Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, et al.
    Antioxidants (Basel), 2023 Mar 23;12(4).
    PMID: 37107164 DOI: 10.3390/antiox12040787
    Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
  6. Hon KW, Naidu R
    Antioxidants (Basel), 2024 Jul 07;13(7).
    PMID: 39061884 DOI: 10.3390/antiox13070815
    Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
  7. Kamal DAM, Ibrahim SF, Ugusman A, Mokhtar MH
    Antioxidants (Basel), 2022 Sep 22;11(10).
    PMID: 36290602 DOI: 10.3390/antiox11101879
    Kelulut honey (KH) has been proven to have excellent antioxidative and anti-inflammatory properties with unique physicochemical characteristics. Therefore, we investigated the isolated and combined effects of KH, metformin, or clomiphene in alleviating oxidative stress and reproductive and metabolic abnormalities in polycystic ovary syndrome (PCOS). Female Sprague-Dawley (SD) rats were given 1 mg/kg/day of letrozole for 21 days to induce PCOS. PCOS rats were then divided into six treatment groups: untreated, metformin (500 mg/kg/day), clomiphene (2 mg/kg/day), KH (1 g/kg/day), combined KH (1 g/kg/day) and metformin (500 mg/kg/day), and combined KH (1 g/kg/day) and clomiphene (2 mg/kg/day). All treatments were administered orally for 35 days. The physicochemical characteristics of KH were assessed through hydroxymethylfurfural, free acidity, diastase number, moisture content, sugar profile, metals, and mineral compounds. Additionally, we determined the semivolatile organic compounds present in KH through gas chromatography-mass spectrometry (GC/MS) analysis. KH and its combination with metformin or clomiphene were shown to improve the oestrus cycle, hormonal profile, and oxidative stress in PCOS rats. However, KH did not reduce the fasting blood glucose, insulin, and body weight gain in PCOS rats. These findings may provide a basis for future studies to discover the potential use of KH as a complementary treatment for women with PCOS.
  8. Wang X, Chen B, Bhullar KS, Yang H, Luo X, Fu J, et al.
    Antioxidants (Basel), 2024 Jul 23;13(8).
    PMID: 39199134 DOI: 10.3390/antiox13080888
    Sixteen novel antioxidant peptides from Asian swamp eel (ASE) were identified in previous studies. However, their chemical and cellular antioxidant mechanisms remain unclear. Molecular docking of these peptides with ABTS and DPPH radicals revealed the critical role of hydrogen bonding and Pi-Pi stacking hydrophobic interactions between hydrophobic amino acid residues and free radicals. Residues, such as tryptophan, proline, leucine, and valine, played significant roles in these interactions. All these peptides exhibited notable erythrocyte morphoprotective effects in a model of AAPH-induced oxidative damage of human erythrocytes. Erythrocyte hemolysis was reduced primarily through the modulation of both non-enzymatic (GSH/GSSG) and enzymatic antioxidant systems (SOD, CAT, and GSH-Px) by these peptides. A decrease in levels of MDA, LDH release, and hemoglobin oxidation was observed. Among the peptides, VLYPW demonstrated superior chemical and cellular antioxidant activities, which may be attributed to its higher levels of tyrosine and tryptophan, as well as to its increased hydrophobic amino acid content.
  9. Davan I, Fakurazi S, Alias E, Ibrahim N', Hwei NM, Hassan H
    Antioxidants (Basel), 2023 Jul 24;12(7).
    PMID: 37508018 DOI: 10.3390/antiox12071480
    In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
  10. Ravichanthiran K, Ma ZF, Zhang H, Cao Y, Wang CW, Muhammad S, et al.
    Antioxidants (Basel), 2018 May 23;7(6).
    PMID: 29789516 DOI: 10.3390/antiox7060071
    Whole grain foods have been promoted to be included as one of the important components of a healthy diet because of the relationship between the regular consumption of whole-grain foods and reduced risk of chronic diseases. Rice is a staple food, which has been widely consumed for centuries by many Asian countries. Studies have suggested that brown rice is associated with a wide spectrum of nutrigenomic implications such as anti-diabetic, anti-cholesterol, cardioprotective and antioxidant. This is because of the presence of various phytochemicals that are mainly located in bran layers of brown rice. Therefore, this paper is a review of publications that focuses on the bioactive compounds and nutrigenomic implications of brown rice. Although current evidence supports the fact that the consumption of brown rice is beneficial for health, these studies are heterogeneous in terms of their brown rice samples used and population groups, which cause the evaluation to be difficult. Future clinical studies should focus on the screening of individual bioactive compounds in brown rice with reference to their nutrigenomic implications.
  11. Nor Azman NHE, Goon JA, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Antioxidants (Basel), 2018 May 28;7(6).
    PMID: 29843393 DOI: 10.3390/antiox7060074
    BACKGROUND: Tocotrienol and tocopherol are known to prevent numerous degenerative diseases. The aim of this study is to compare the effects of tocotrienol-rich fraction (TRF) with α-tocopherol (α-TF) on the antioxidant status of healthy individuals aged between 50 and 55 years.

    METHODS: Volunteers were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24). Fasting venous blood samples were taken at baseline (0 month), 3 months and 6 months of supplementation for the determination of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities as well as for reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations.

    RESULTS: CAT and GPx were unaffected by TRF and α-TF supplementations. SOD activity increased significantly after six months of TRF supplementation. Analysis by gender showed that only female subjects had significant increases in SOD and GPx activities after six months of TRF supplementation. GPx activity was also significantly higher in females compared to males after six months of TRF supplementation. The GSH/GSSG ratio increased significantly after six months of TRF and α-TF supplementation in only the female subjects.

    CONCLUSION: TRF and α-TF supplementation exhibited similar effects to the antioxidant levels of older adults with TRF having more significant effects in females.

  12. Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL
    Antioxidants (Basel), 2023 Dec 13;12(12).
    PMID: 38136228 DOI: 10.3390/antiox12122109
    Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
  13. Benali T, Jaouadi I, Ghchime R, El Omari N, Harboul K, Hammani K, et al.
    Antioxidants (Basel), 2022 Sep 19;11(9).
    PMID: 36139916 DOI: 10.3390/antiox11091842
    The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links