Gentiana Lutea root (G. Lutea) is a medicinal herb, traditionally used as a bitter tonic in gastrointestinal ailments for improving the digestive system. The active principles of G. Lutea were found to be secoiridoid bitter compounds as well as many other active compounds causing the pharmacological effects. No study to date has yet determined the potential of G. Lutea antioxidant activity on lipid oxidation. Thus, the aim of this study was to evaluate the effects of an extract of G. Lutea on lipid oxidation during storage of an emulsion. G. Lutea extracts showed excellent antioxidant activity measured by DPPH scavenging assay and Trolox equivalent antioxidant capacity (TEAC) assays. An amount of 0.5% w/w G. Lutea lyophilise was able to inhibit lipid oxidation throughout storage (p < 0.05). A mixture of G. Lutea with 0.1% (w/w) BSA showed a good synergic effect and better antioxidant activity in the emulsion. Quantitative results of HPLC showed that G. Lutea contained secoiridoid-glycosides (gentiopiocroside and sweroside) and post column analysis displayed radical scavenging activity of G. Lutea extract towards the ABTS radical. The results from this study highlight the potential of G. Lutea as a food ingredient in the design of healthier food commodities.
The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every 6-day interval, the oxidative properties of the supplemented sunflower oil were evaluated based on the following tests, namely peroxide value, p-anisidine value, Thiobarbituric Acid Reactive Substances (TBARS) assay, iodine value and free fatty acids. The total oxidation (TOTOX) values were also calculated based on the peroxide values and p-anisidine values. Rambutan extract is a potential source of antioxidant. The oxidative activities of the extracts at all concentrations were significantly (p < 0.05) higher than the control. Generally, the partially fractionated fraction was more effective than the crude extract. With a 2-year storage period at ambient temperature, the fractionated fraction of the extract, SF II at 300 ppm, was observed to work more effectively than the synthetic antioxidant, t-Tocopherol, and it possessed a protective effect comparable with butylatedhydrioxynanisole (BHA). Therefore, rambutan extract could be used as a potential alternative source of antioxidant in the oil industry or other fat-based products to delay lipid oxidation.
The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.
Hypericum is a well-known plant genus in herbal medicine. Hypericum mysorense (Family: Hypericaceae), a plant belonging to the same genus, is well known in folklore medicine for its varied therapeutic potential.
Two underutilized indigenous fruits of Borneo, Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) were investigated for their total phenolic (TPC), flavonoid (TFC), anthocyanin (TAC) and carotenoid (TCC) contents as well as antioxidant properties in vitro. The fruits were separated into three different parts (i.e., pericarp, flesh and seed) and extracted using 80% methanol. Antioxidant activity was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging, ABTS decolorization and FRAP (Ferric Reducing Antioxidant Power) assays. The results showed that B. macrocarpa pericarp contained the highest amount of total phenolics, total flavonoid, total anthocyanin and total carotenoid with the values of 60.04 ± 0.53 mg GAE/g, 44.68 ± 0.67 mg CE/g, 1.23 ± 0.20 mg c-3-gE/100 g and 0.81 ± 0.14 mg BCE/g. Results from DPPH, ABTS and FRAP assays also showed that the pericarp of B. macrocarpa displayed the highest antioxidant capacity. The antioxidant activity of the extract was significantly correlated with the total phenolic and flavonoid contents, but not with the carotenoid contents. In conclusion, B. macrocarpa displayed high potential as natural source of phytochemicals with antioxidant properties.
Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying.
Obesity is associated with various diseases, particularly diabetes, hypertension, osteoarthritis and heart disease. Research on possibilities of herbal extracts and isolated compounds from natural products for treating obesity has an upward trend. Saffron (Crocus Sativus L. Iridaceae) is a source of plant polyphenols/carotenoids, used as important spice and food colorant in different parts of the world. It has also been used in traditional medicine for treatment of different types of illnesses since ancient times. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. The aim of this article is to assess the potential role of saffron and its constituents in the regulation of metabolic functions, which can beneficially alter obesity pathophysiology.
Aqueous and ethanol extracts of oven and freeze-dried Streblus asper leaves were investigated using DPPH assay. The presence of phenolic compounds and flavonoids in the extracts, which were detected by Folin and colorimetric assays, respectively, may be responsible for the antioxidant activities of S. asper. The different drying treatments resulted in significant differences (p < 0.05) in the antioxidant properties as well as the phenolic and flavonoid contents of the S. asper extracts. Freeze-dried S. asper leaf extracts exhibited high DPPH radical scavenging activity ranging from 69.48% ± 0.03% to 89.25% ± 0.01% at concentrations ranging from 0 to 1 mg/mL, significantly higher compared with the oven-dried extracts which were in the range of 68.56% ± 0.01% to 86.68% ± 0.01%. Generally, the 70% ethanol extract of the freeze-dried samples exhibited higher phenolic and flavonoid content than the aqueous extract, with values of 302.85 ± 0.03 mg GAE/g and 22.70 ± 0.02 mg QE/g compared with 226.8 ± 0.03 mg GAE/g and 15.38 ± 0.05 mg QE/g, respectively. This study showed that S. asper leaf extracts contain a number of health promoting bioactive compounds, such as phenolic compounds, and are potential sources of natural antioxidants.
Extracts of plants from the Malaysian rainforest and other fragile habitats are being researched intensively for identification of beneficial biological actions, with assessment of antioxidant behavior being a common component of such assessments. A number of tests for antioxidant behavior are used, with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP) assays often being used in parallel, and also with measurement of total phenolics content (TPC) as a surrogate marker for antioxidant capacity. The present study investigated the possible redundancy in using all three assays to determine antioxidant capacity in 92 extracts obtained from 27 plants from the Malaysian rainforest. The results demonstrated that the assays displayed a high (R ≥ 0.82) and significant (P < 0.0001) correlation with one another, indicating a high level of redundancy if all three assays are used in parallel. This appears to be a waste of potentially valuable plant extracts. Because of problems with the FRAP assay relating to color interference and variable rates of reaction point, the DPPH assay is the preferred assay in preliminary screening of extracts of plants from the Malaysian rainforest.
The common bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. The fruits are almost tasteless but the plant contains a high concentration of active ingredients. The antioxidant activity of bearberry leaf extract in the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g dry weight (DW). The scavenging ability of the methanol extract of bearberry leaves against methoxy radicals generated in the Fenton reaction was measured via electron paramagnetic resonance. Lipid oxidation was retarded in an oil-water emulsion by adding 1 g/kg lyophilised bearberry leaf extract. Also, 1 g/kg of lyophilised bearberry leaf extract incorporated into a gelatin-based film displayed high antioxidant activity to retard the degradation of lipids in muscle foods. The present results indicate the potential of bearberry leaf extract for use as a natural food antioxidant.
In this study, the antioxidant activity of the Convolvulus arvensis Linn (CA) ethanol extract has been evaluated by different ways. The antioxidant activity of the extract assessed by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) was 1.62 mmol Trolox equivalents (TE)/g DW, 1.71 mmol TE/g DW and 2.11 mmol TE/g DW, respectively. CA ethanol extract exhibited scavenging activity against the methoxy radical initiated by the Fenton reaction and measured by Electron Paramagnetic Resonance (EPR). The antioxidant effects of lyophilised CA measured in beef patties containing 0.1% and 0.3% (w/w) CA stored in modified atmosphere packaging (MAP) (80% O₂ and 20% CO₂) was determined. A preliminary study of gelatine based film containing CA showed a strong antioxidant effect in preventing the degradation of lipid in muscle food. Thus, the present results indicate that CA extract can be used as a natural food antioxidant.
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Full-fat roasted date seeds are considered an excellent source of antioxidants which can treat many diseases. The specific objectives were to investigate the effect of roasting temperature and time on the hardness of whole seeds, moisture content of the roasted date seeds powder, DPPH radical scavenging activity, total phenolic contents, extraction yield, pH, browning index and sensory properties of the brew prepared from the full-fat roasted date seeds and to construct descriptive models that could describe this effect. Date seeds were roasted at three temperatures (160, 180 and 200 °C) for different period of times (10, 20 and 30 min) using a natural conventional oven; then grinded and next brewed. Hardness of whole seeds, moisture content of the seeds powder, DPPH radical scavenging activity and total phenolic contents, extraction yield, pH and browning index and sensory properties of the brew were significantly affected by the roasting conditions. The statistical results indicated that the proposed model could adequately describe the measured properties. Strong correlations have been found among the properties of the brew as well. The producers of the date seeds brew can utilize these results for controlling the roasting process.
Microglial cells are the primary immune cell resident in the brain. Growing evidence indicates that microglial cells play a prominent role in alcohol-induced brain pathologies. However, alcohol-induced effects on microglial cells and the underlying mechanisms are not fully understood, and evidence exists to support generation of oxidative stress due to NADPH oxidases (NOX_-mediated production of reactive oxygen species (ROS). Here, we investigated the role of the oxidative stress-sensitive Ca2+-permeable transient receptor potential melastatin-related 2 (TRPM2) channel in ethanol (EtOH)-induced microglial cell death using BV2 microglial cells. Like H2O2, exposure to EtOH induced concentration-dependent cell death, assessed using a propidium iodide assay. H2O2/EtOH-induced cell death was inhibited by treatment with TRPM2 channel inhibitors and also treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, demonstrating the critical role of PARP and the TRPM2 channel in EtOH-induced cell death. Exposure to EtOH, as expected, led to an increase in ROS production, shown using imaging of 2',7'-dichlorofluorescein fluorescence. Consistently, EtOH-induced microglial cell death was suppressed by inhibition of NADPH oxidase (NOX) as well as inhibition of protein kinase C. Taken together, our results suggest that exposure to high doses of ethanol can induce microglial cell death via the NOX/ROS/PARP/TRPM2 signaling pathway, providing novel and potentially important insights into alcohol-induced brain pathologies.
The risk of macular degeneration can be reduced through the consumption of antioxidant-rich foods, supplements, and nutraceutical formulas. This review focuses on the antioxidants, vitamins, and minerals that have been reported for reducing the risk of macular degeneration and other eye-related diseases. Antioxidants including anthocyanins, carotenoids, flavonoids, and vitamins have been shown to reduce the risk of eye-related diseases. Anthocyanins extracted from berries are powerful antioxidants. Cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin are anthocyanin aglycones detected in berries, currants, and other colored fruits and vegetables. β-Carotene, as well as xanthophyll lutein and zeaxanthin, have been reported to reduce the risk of macular degeneration. Flavonoids from plants help in the prevention of eye-related diseases through anti-inflammatory mechanisms. A combination of these antioxidants, vitamins, and minerals possess a synergistic effect on the prevention or risk reduction of macular degeneration. Formulas have been developed as dietary supplements to cater to the high demand from consumers and patients with eye problems. Many of the formulated dietary supplements that are sold in the market have been clinically proven for their efficacy to treat eye diseases. Although the bioactivities in the supplement capsules or tablets have been scientifically established for reducing risks of several diseases, which include macular degeneration and other eye-related diseases, knowledge on the right dosage, efficacy, and bioavailability of antioxidants, vitamins, and minerals is important for consumers. The information may help them make the best decision in choosing the right dietary supplements and nutraceuticals following the evidence-based recommended dosages and reference intakes for improving general health and preventing eye-related diseases. This review covers the potential causal factors involved in eye diseases, clinically proven treatments, and controversial findings on the antioxidants in the prevention of macular degeneration. Future studies should consider multiethnic and multicenter trials for eliminating potential bias in research.
Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).
This study aims to evaluate the influence of Vitamin A and E homologues toward acrylamide in equimolar asparagine-glucose model system. Vitamin A homologue as β-carotene (BC) and five Vitamin E homologues, i.e., α-tocopherol (AT), δ-tocopherol (DT), α-tocotrienol (ATT), γ-tocotrienol (GTT), and δ-tocotrienol (DTT), were tested at different concentrations (1 and 10 µmol) and subjected to heating at 160 °C for 20 min before acrylamide quantification. At lower concentrations (1 µmol; 431, 403, 411 ppm, respectively), AT, DT, and GTT significantly increase acrylamide. Except for DT, enhancing concentration to 10 µmol (5370, 4310, 4250, 3970, and 4110 ppm, respectively) caused significant acrylamide formation. From linear regression model, acrylamide concentration demonstrated significant depreciation over concentration increase in AT (Beta = -83.0, R2 = 0.652, p ≤ 0.05) and DT (Beta = -71.6, R2 = 0.930, p ≤ 0.05). This study indicates that different Vitamin A and E homologue concentrations could determine their functionality either as antioxidants or pro-oxidants.
Six different solvents were used as extraction medium (water, methanol, ethanol, acidified methanol, benzene and acetone) to check their phenolics extraction efficacy from flour of two rye cultivars. Rye extracts with different solvents were further analyzed for the estimation of phytochemicals and antioxidant properties. Different tests (TPC, TAC, DPPH, FRAP, ABTS, RPA and CTC) were performed to check the antioxidant properties and tannin contents in extracts. A bioactive profile of a rye cultivar indicated the presence of total phenolic compounds (0.08-2.62 mg GAE/g), total antioxidant capacity (0.9-6.8 mg AAE/g) and condensed tannin content (4.24-9.28 mg CE/100 g). HPLC was done to check phenolics in rye extract with the best solvent (water), which indicated the presence of Catechol (91.1-120.4 mg/100 g), resorcinol (52-70.3 mg/100 g), vanillin (1.3-5.5 mg/100 g), ferulic acid (1.4-1.5 mg/100 g), quercetin (4.6-4.67 mg/100 g) and benzoic acid (5.3 mg/100 g) in rye extracts. The presence of DNA damage protection potential in rye extracts indicates its medicinal importance. Rye flour could be utilized in the preparation of antioxidant-rich health-benefiting food products.
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals' ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets' species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals' performances were simplified and presented for more research and development.