Displaying publications 41 - 60 of 111 in total

Abstract:
Sort:
  1. Yousaf A, Hamid SA, Bunnori NM, Ishola AA
    Drug Des Devel Ther, 2015;9:2831-8.
    PMID: 26082613 DOI: 10.2147/DDDT.S83213
    Research on the therapeutic applications of calixarene derivatives is an emerging area of interest. The anticancer activity of various functionalized calixarenes has been reported by several research groups. Due to their superior geometric shape, calixarenes can accommodate drug molecules by forming inclusion complexes. Controlled release of anticancer drugs by calixarenes might help in targeted chemotherapy. This review summarizes the anticancer potential of the calixarenes and their drug loading properties. The potential use of calixarenes in chemoradiotherapy is also highlighted in brief.
  2. Razavi M, Karimian H, Yeong CH, Sarji SA, Chung LY, Nyamathulla S, et al.
    Drug Des Devel Ther, 2015;9:3125-39.
    PMID: 26124637 DOI: 10.2147/DDDT.S82935
    The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of (153)Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern.
  3. Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2015;9:2049-61.
    PMID: 25897211 DOI: 10.2147/DDDT.S79660
    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.
  4. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al.
    Drug Des Devel Ther, 2015;9:1401-17.
    PMID: 25834398 DOI: 10.2147/DDDT.S67976
    Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer.
  5. Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM
    Drug Des Devel Ther, 2015;9:1437-48.
    PMID: 25792804 DOI: 10.2147/DDDT.S77727
    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.
  6. Adewoyin M, Mohsin SM, Arulselvan P, Hussein MZ, Fakurazi S
    Drug Des Devel Ther, 2015;9:2475-84.
    PMID: 25995619 DOI: 10.2147/DDDT.S72716
    BACKGROUND: Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA.

    METHODS: In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined.

    RESULTS: Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only.

    CONCLUSION: The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control.

  7. Huri HZ, Ling DY, Ahmad WA
    Drug Des Devel Ther, 2015;9:4735-49.
    PMID: 26316711 DOI: 10.2147/DDDT.S87294
    PURPOSE: Cardiovascular disease (CVD) is a macrovascular complication in patients with type 2 diabetes mellitus (T2DM). To date, glycemic control profiles of antidiabetic drugs in cardiovascular (CV) complications have not been clearly elucidated. Therefore, this study was conducted retrospectively to assess the association of antidiabetic drugs and glycemic control with CV profiles in T2DM patients. The association of concurrent medications and comorbidities with glycemic control was also investigated.

    METHODS: A total of 220 T2DM patients from the University of Malaya Medical Centre, Malaysia, who had at least one CV complication and who had been taking at least one antidiabetic drug for at least 3 months, were included. The associations of antidiabetics, cardiovascular diseases, laboratory parameters, concurrent medications, comorbidities, demographics, and clinical characteristics with glycemic control were investigated.

    RESULTS: Sulfonylureas in combination (P=0.002) and sulfonylurea monotherapy (P<0.001) were found to be associated with good glycemic control, whereas insulin in combination (P=0.051), and combination biguanides and insulin therapy (P=0.012) were found to be associated with poor glycemic control. Stroke (P=0.044) was the only type of CVD that seemed to be significantly associated with good glycemic control. Other factors such as benign prostatic hyperplasia (P=0.026), elderly patients (P=0.018), low-density lipoprotein cholesterol levels (P=0.021), and fasting plasma glucose (P<0.001) were found to be significantly correlated with good glycemic control.

    CONCLUSION: Individualized treatment in T2DM patients with CVDs can be supported through a better understanding of the association between glycemic control and CV profiles in T2DM patients.

  8. Huri HZ, Lim LP, Lim SK
    Drug Des Devel Ther, 2015;9:4355-71.
    PMID: 26300627 DOI: 10.2147/DDDT.S85676
    BACKGROUND: Good glycemic control can delay the progression of kidney diseases in type 2 diabetes mellitus (T2DM) patients with renal complications. To date, the association between antidiabetic agents and glycemic control in this specific patient population is not well established.

    PURPOSE: This study aimed to identify antidiabetic regimens as well as other factors that associated with glycemic control in T2DM patients with different stages of chronic kidney disease (CKD).

    PATIENTS AND METHODS: This retrospective, cross-sectional study involved 242 T2DM inpatients and outpatients with renal complications from January 2009 to March 2014 and was conducted in a tertiary teaching hospital in Malaysia. Glycated hemoglobin (A1C) was used as main parameter to assess patients' glycemic status. Patients were classified to have good (A1C <7%) or poor glycemic control (A1C ≥7%) based on the recommendations of the American Diabetes Association.

    RESULTS: Majority of the patients presented with CKD stage 4 (43.4%). Approximately 55.4% of patients were categorized to have poor glycemic control. Insulin (57.9%) was the most commonly prescribed antidiabetic medication, followed by sulfonylureas (43%). Of all antidiabetic regimens, sulfonylureas monotherapy (P<0.001), insulin therapy (P=0.005), and combination of biguanides with insulin (P=0.038) were found to be significantly associated with glycemic control. Other factors including duration of T2DM (P=0.004), comorbidities such as anemia (P=0.024) and retinopathy (P=0.033), concurrent medications such as erythropoietin therapy (P=0.047), α-blockers (P=0.033), and antigouts (P=0.003) were also correlated with A1C.

    CONCLUSION: Identification of factors that are associated with glycemic control is important to help in optimization of glucose control in T2DM patients with renal complication.

  9. Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM
    Drug Des Devel Ther, 2016;10:1817-27.
    PMID: 27330275 DOI: 10.2147/DDDT.S101212
    BACKGROUND: Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity).

    AIM: This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476.

    MATERIALS AND METHODS: The production of secondary metabolites by this strain was optimized through Thronton's media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance.

    RESULTS: During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol.

    CONCLUSION: On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.

  10. Meor Mohd Affandi MM, Tripathy M, Shah SA, Majeed AB
    Drug Des Devel Ther, 2016;10:959-69.
    PMID: 27041998 DOI: 10.2147/DDDT.S94701
    We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.
  11. Muhammad AA, Arulselvan P, Cheah PS, Abas F, Fakurazi S
    Drug Des Devel Ther, 2016;10:1715-30.
    PMID: 27307703 DOI: 10.2147/DDDT.S96968
    Diabetic foot ulcer is a serious complication of diabetes, which affects a significant percentage (15%) of diabetics and up to 15%-24% of those affected may require amputation. Therefore, the economic burden of diabetic foot ulcers is enormous and is associated with high cost of treatment and prolongs hospitalization. The present study was conducted to evaluate antibacterial and in vivo wound healing activities of an aqueous fraction of Moringa oleifera on a diabetic condition. Antibacterial activity testing was carried out using agar well and tube dilution techniques. The in vivo study was conducted using six groups of animals that comprise of one normal and diabetic control group each, three treatment groups of 0.5%, 1%, and 2% w/w aqueous fraction, and a positive control group (1% w/w silver sulfadiazine). Rats were induced with diabetes using a combination of streptozotocin 65 and 150 mg/kg nicotinamide daily for 2 days, and excision wounds were created and treated with various doses (0.5%, 1%, and 2% w/w aqueous fraction) daily for 21 days. Biophysical, histological, and biochemical parameters were investigated. The results of the study revealed that aqueous fraction possessed antibacterial activity through inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli organisms. The topical application of aqueous fraction revealed enhancement of wound healing under sustained hyperglycemic condition for the duration of the experiment. This enhancement was achieved through decreased wound size, improved wound contraction, and tissue regeneration, as well as downregulation of inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of an angiogenic marker vascular endothelial growth factor in wound tissue treated with various doses of aqueous fraction of M. oleifera. The findings suggest that aqueous fraction of M. oleifera containing Vicenin-2 active compound may accelerate wound healing in hyperglycemic condition.
  12. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

  13. Ibrahim IA, Abdulla MA, Hajrezaie M, Bader A, Shahzad N, Al-Ghamdi SS, et al.
    Drug Des Devel Ther, 2016;10:93-105.
    PMID: 26766904 DOI: 10.2147/DDDT.S91247
    Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid-Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins.
  14. Yuandani, Jantan I, Ilangkovan M, Husain K, Chan KM
    Drug Des Devel Ther, 2016;10:1935-45.
    PMID: 27354767 DOI: 10.2147/DDDT.S105651
    Standardized extract of Phyllanthus amarus has previously been shown to have a strong inhibitory effect on phagocytic activity of human neutrophils. The current study was carried out to evaluate the effects of constituents of the extract of P. amarus on nitric oxide (NO) production as well as lymphocyte proliferation and cytokine release from phagocytes. Three compounds, ethyl 8-hydroxy-8-methyl-tridecanoate, 7β,19α dihydroxy-urs-12-ene, and 1,7,8-trihydroxy-2-naphtaldehyde, together with seven known compounds were isolated from the whole plant of P. amarus. The isolated compounds and reference standards, ie, gallic acid, ellagic acid, corilagin, and geraniin, which were quantitatively analyzed in the extracts, were evaluated for their effects on immune cells. Among the compounds tested, the lignans, especially phyltetralin and phyllanthin, showed strong inhibition on lymphocyte proliferation with half maximal inhibitory concentration (IC50) values of 1.07 μM and 1.82 μM, respectively. Ethyl 8-hydroxy-8-methyl-tridecanoate and 1,7,8-trihydroxy-2-naphtaldehyde exhibited strong inhibition on nitric oxide production with IC50 values of 0.91 μM and 1.07 μM, respectively. Of all the compounds, corilagin was the strongest inhibitor of tumor necrosis factor-α release with an IC50 value of 7.39 μM, whereas geraniin depicted the strongest inhibitory activity on interleukin-1β release with an IC50 value of 16.41 μM. The compounds constituting the extract of P. amarus were able to inhibit the innate immune response of phagocytes at different steps.
  15. Ali NM, Akhtar MN, Ky H, Lim KL, Abu N, Zareen S, et al.
    Drug Des Devel Ther, 2016;10:1897-907.
    PMID: 27358555 DOI: 10.2147/DDDT.S102164
    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2'-Hydroxy-4',6'-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with (1)H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet ((1)H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug.
  16. Abbaspour Babaei M, Kamalidehghan B, Saleem M, Huri HZ, Ahmadipour F
    Drug Des Devel Ther, 2016;10:2443-59.
    PMID: 27536065 DOI: 10.2147/DDDT.S89114
    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence.
  17. Albaayit SF, Abba Y, Abdullah R, Abdullah N
    Drug Des Devel Ther, 2016;10:1973-86.
    PMID: 27366052 DOI: 10.2147/DDDT.S103993
    Clausena excavata is a natural herb with both antioxidant and anti-inflammatory properties. It has been used for decades in folkloric practice for the amelioration of various ailments. In this study, the gastroprotective activity of methanolic extract of C. excavata leaves (MECE) was determined in the Sprague Dawley rat ethanol-induced gastric ulcer model. Rats were pretreated with a single dose of vehicle (5% Tween 20), 20 mg/mL omeprazole, 400 and 200 mg/mL of MECE dissolved in 5% Tween 20. Ulcer was induced with 5 mL/kg of ethanol and stomach tissue was obtained after 1 hour. Histological examination was done on hematoxylin and eosin, periodic acid-Schiff, and immunochemically stained gastric mucosal tissues. Prostaglandin E2, superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation levels of the gastric tissue homogenates were also determined. Significantly (P<0.05) smaller ulcer areas, less intense edema, and fewer leukocytes' infiltration were observed in MECE- and omeprazole-treated than in untreated gastric mucosa with ulcer. The gastric pH, mucus production, superoxide dismutase, catalase, and glutathione peroxidase contents increased, while the lipid peroxidation content decreased as a result of MECE treatment. Bcl-2-associated X protein was underexpressed, while heat shock protein 70 and transforming growth factor-beta protein were overexpressed in the ulcerated gastric mucosa tissues treated with omeprazole and MECE. Similarly, there was a reduction in the levels of tumor necrotic factor-alpha and interleukin-6, while the level of interleukin-10 was increased. This study showed that the gastroprotective effect of MECE is achieved through inhibition of gastric juice secretion and ulcer lesion development, stimulation of mucus secretion, elevation of gastric pH, reduction of reactive oxygen species production, inhibition of apoptosis in the gastric mucosa, and modulation of inflammatory cytokines.
  18. Shah SM, Ullah F, Khan S, Shah SM, de Matas M, Hussain Z, et al.
    Drug Des Devel Ther, 2016;10:3837-3850.
    PMID: 27920499
    Artemether (ARTM) is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena(®) DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL) and stabilizer solution (300.0±2.0 µg/mL). The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C-8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0). The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05) compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0.05) against Plasmodium falciparum and Plasmodium vivax. The IC50 (median lethal oral dose) value of ARTM nanocrystals was 28- and 54-fold lower than the IC50 value of unprocessed drug and 13- and 21-fold lower than the IC50 value of the marketed tablets, respectively. In addition, ARTM nanocrystals at the same dose (2 mg/kg) showed significantly (P<0.05) higher reduction in percent parasitemia (89%) against P. vivax compared to the unprocessed (27%), marketed tablets (45%), and microsuspension (60%). The acute toxicity study demonstrated that the LD50 value of ARTM nanocrystals is between 1,500 mg/kg and 2,000 mg/kg when given orally. This study demonstrated that the wet milling technology (Dena(®) DM-100) can produce smart nanocrystals of ARTM with enhanced antimalarial activities.
  19. Chin KY
    Drug Des Devel Ther, 2016;10:3029-3042.
    PMID: 27703331
    Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
  20. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links