Displaying publications 41 - 43 of 43 in total

Abstract:
Sort:
  1. Ayipo YO, Chong CF, Abdulameed HT, Mordi MN
    Fitoterapia, 2024 Mar 27;175:105922.
    PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922
    Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
  2. Yousof NSAM, Afzan A, Zainol M, Bakar SIA, Razak MRMA, Jelas NHM, et al.
    Fitoterapia, 2024 Apr 09;175:105955.
    PMID: 38604259 DOI: 10.1016/j.fitote.2024.105955
    Brucea javanica, a valued traditional medicinal plant in Malaysia, known for its fever-treating properties yet remains underexplored for its potential antiviral properties against dengue. This study aims to simultaneously identify chemical classes and metabolites within B. javanica using molecular networking (MN), by Global Natural Product Social (GNPS), and SIRIUS in silico annotation. Liquid chromatography-mass spectrometry (LC-MS2)-based MN explores chemical diversity across four plant parts (leaves, roots, fruits, and stem bark), revealing diverse metabolites such as tryptophan-derived alkaloids, terpenoids, and octadecadenoids. Simultaneous LC-MS2 and MN analyses reveal a discriminative capacity for individual plant components, with roots accumulating tryptophan alkaloids, fruits concentrating quassinoids, leaves containing fusidanes, and stem bark primarily characterised by simple indoles. Subsequently, extracts were evaluated for dengue antiviral activity using adenosine triphosphate (ATP) and plaque assays, indicates potent efficacy in the dichloromethane (DCM) extract from roots (EC50 = 0.3 μg/mL, SI = 10). Molecular docking analysis of two major compounds; canthin-6-one (264) and 1-hydroxy-11-methoxycanthin-6-one (275) showed potential binding interactions with active sites of NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) protein. Subsequent in vitro evaluation revealed compounds 264 and 275 had a promising dengue antiviral activity with SI value of 63 and 1.85. These identified metabolites emerge as potential candidates for further evaluation in dengue antiviral activities.
  3. Afzan A, Lee JC, Adam Z, Mustafa Khalid N, Gunasegavan RDN, Md Noh MF, et al.
    Fitoterapia, 2024 Apr 09;175:105958.
    PMID: 38604262 DOI: 10.1016/j.fitote.2024.105958
    In our quest to discover advanced glycation end products (AGEs) inhibitors from Clinacanthus nutans (Burm.f.) Lindau leaves, we conducted a bioactivity-based molecular networking. This approach integrates LC-MS2 profiling and in vitro antiglycation data to predict bioactive compounds. We began by screening three extracts: 100% ethanol, 70% ethanol and 100% water alongside the in vitro antioxidant activity, total phenolics content (TPC) and schaftoside content. Among these extracts, 100% ethanol extract exhibited the highest total AGEs inhibition effects (IC50 = 80.18 ± 11.6 μg/mL), DPPH scavenging activity (IC50 = 747.40 ± 10.30 μg/mL) and TPC (26.54 ± 2.09 μg GAE /mg extract). Intriguingly, 100% ethanol extract contained the lowest amount of schaftoside, suggesting the involvement of other phytochemicals in the antiglycation effects. The molecular networking and in silico structural annotations of 401 LC-MS features detected in the fractions from 100% ethanol extract predicted 21 bioactive compounds (p  0.90), including several C40 carotenoids, alkaloids containing tetrapyrrole structures and fatty acids. On the contrary, all phenolics showed weak correlations with antiglycation effects. These predictions were further validated in vitro, where carotenoid lutein showed half maximal inhibitory concentration, IC50 = 96 ± 8 μM and selected flavonoid-C-glycosides exhibited weaker inhibitions (IC50 between 568 and 1922 μM). Notably, lutein content was higher in freeze-dried leaves (12.42 ± 0.82 mg/100 g) than oven-dried, although the former was associated with elevated mercury levels. In summary, C. nutans exhibited potential antiglycation and antioxidant activity, and lutein was identified as the main bioactive principle.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links