Displaying publications 41 - 60 of 306 in total

Abstract:
Sort:
  1. Suhaimi SS, Ab Mutalib NS, Khor SS, Zain RRM, Syafruddin SE, Abu N, et al.
    Front Pharmacol, 2018;9:750.
    PMID: 30057548 DOI: 10.3389/fphar.2018.00750
    Endometrioid endometrial cancer (EEC) is the commonest form of endometrial cancer and can be divided into estrogen receptor (ER) positive and negative subtypes. The mutational profiles of EEC have been shown to aid in tailoring treatment; however, little is known about the differences between the gene mutation profiles between these two subtypes. This study aims to investigate the gene mutation profile in ER positive and negative EEC, and to further elucidate the role of WHSC1 mutations in this cancer. EEC and normal endometrial tissues were obtained from 29 patients and subjected to next-generation sequencing (NGS) using Ion Ampliseq Comprehensive Cancer PanelTM targeting 409 cancer related. A total of 741 non-synonymous alterations were identified from 272 genes in ER positive subtype while 448 non-synonymous variants were identified from 221 genes in ER negative subtype. PTEN is the most frequently altered gene in ER positive subtype (64%, 7/11) while ARID1A is the most frequently altered gene in ER negative subtype (50%, 4/8). We also identified alterations in ERRB3 (36%, 4/11), GNAS (36%, 4/11), and WHSC1 (27%, 3/11) in the ER positive subtype. WHSC1 R1126H and L1268P were shown to significantly increase cell viability, proliferation, migration, and survival. In addition, reduction in ER expression sensitized EEC-1 cell with WHSC1 L1268P mutant to Fulvestrant treatment. We revealed the mutational spectra of ER positive and ER negative EEC that could lead to better understanding of the biological mechanisms of endometrial cancer and may ultimately result in improvement of treatment options and patient prognosis.
  2. Omar N, Ismail CAN, Long I
    Front Pharmacol, 2021;12:805854.
    PMID: 35082680 DOI: 10.3389/fphar.2021.805854
    Diabetes mellitus and its consequences continue to put a significant demand on medical resources across the world. Diabetic neuropathic pain (DNP) is a frequent diabetes mellitus chronic microvascular outcome. Allodynia, hyperalgesia, and aberrant or lack of nerve fibre sensation are all symptoms of DNP. These clinical characteristics will lead to worse quality of life, sleep disruption, depression, and increased mortality. Although the availability of numerous medications that alleviate the symptoms of DNP, the lack of long-term efficacy and unfavourable side effects highlight the urgent need for novel treatment strategies. This review paper systematically analysed the preclinical research on the treatment of DNP using plant phytochemicals that contain only tannins. A total of 10 original articles involved in in-vivo and in-vitro experiments addressing the promising benefits of phytochemical tannins on DNP were examined between 2008 and 2021. The information given implies that these phytochemicals may have relevant pharmacological effects on DNP symptoms through their antihyperalgesic, anti-inflammatory, and antioxidant properties; however, because of the limited sample size and limitations of the studies conducted so far, we were unable to make definitive conclusions. Before tannins may be employed as therapeutic agents for DNP, more study is needed to establish the specific molecular mechanism for all of these activities along the pain pathway and examine the side effects of tannins in the treatment of DNP.
  3. Aftab RA, Sellappans R, Ming CK, Shaik I
    Front Pharmacol, 2020;11:729.
    PMID: 32528285 DOI: 10.3389/fphar.2020.00729
    Background: Hypertension is one of the primary predictor of mortality among end-stage renal disease (ESRD) patients on dialysis. However, there is no consensus on an ideal blood pressure range for this population.

    Aims and Objective: To identify an ideal systolic blood pressure range based on optimal survival among ESRD patients on dialysis.

    Method: A systematic search for clinical trials assessing the impact of different systolic blood pressure range on mortality among ESRD patients on hemodialysis was conducted through PubMed, EBSCOhost, Science Direct, Google Scholar, and Scopus. All randomized control trials (RCTs) involving ESRD patients on hemodialysis with primary or secondary outcome of assessing the impact different systolic blood pressure range (140 mm Hg) on all-cause mortality were included. The quality of reporting of the included studies was evaluated using the Jadad scale. Two researchers independently conducted eligibility assessment. Discrepancies were resolved by discussion and consultation with a third researcher when needed. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated.

    Results: A total of 1,787 research articles were identified during the initial search, after which six RCTs met our inclusion criteria. According to the Jadad scale, all six RCTs scored 3 points each for quality of reporting. Four RCTs employed pharmacological intervention while two RCTs assessed non-pharmacological intervention. Of the six RCTs, two studies were able to achieve a systolic blood pressure of <140 mm Hg at the end of trial with a RR for reduction in mortality of 0.56 (95% CI, 0.3-1.07; P = 0.08). Four RCTs were able to achieve a systolic blood pressure of >140 mm Hg at the end of trial, with the RR for reduction of mortality of 0.72 (95% CI, 0.54-0.96; P = 0.003). Overall, pooled estimates of the six RCTs suggested the reduction in systolic blood pressure statistically reduce all cause of mortality (RR, 0.69%; 95% CI, 0.53-0.90; P = 0.006) among ESRD patients on hemodialysis.

    Conclusion: Though not statically significant, the current study identifies <140 mm Hg as a promising blood pressure range for optimum survival among ESRD patients on hemodialysis. However, further studies are required to establish an ideal blood pressure range among hemodialysis patients.

    Systematic Review Registration: The study protocol was registered under PROSPERO (CRD42019121102).

  4. Malko P, Syed Mortadza SA, McWilliam J, Jiang LH
    Front Pharmacol, 2019;10:239.
    PMID: 30914955 DOI: 10.3389/fphar.2019.00239
    Microglial cells in the central nervous system (CNS) are crucial in maintaining a healthy environment for neurons to function properly. However, aberrant microglial cell activation can lead to excessive generation of neurotoxic proinflammatory mediators and neuroinflammation, which represents a contributing factor in a wide spectrum of CNS pathologies, including ischemic stroke, traumatic brain damage, Alzheimer's disease, Parkinson's disease, multiple sclerosis, psychiatric disorders, autism spectrum disorders, and chronic neuropathic pain. Oxidative stress is a salient and common feature of these conditions and has been strongly implicated in microglial cell activation and neuroinflammation. The transient receptor potential melastatin-related 2 (TRPM2) channel, an oxidative stress-sensitive calcium-permeable cationic channel, is highly expressed in microglial cells. In this review, we examine the recent studies that provide evidence to support an important role for the TRPM2 channel, particularly TRPM2-mediated Ca2+ signaling, in mediating microglial cell activation, generation of proinflammatory mediators and neuroinflammation, which are of relevance to CNS pathologies. These findings lead to a growing interest in the TRPM2 channel, a new player in neuroinflammation, as a novel therapeutic target for CNS diseases.
  5. Sunggip C, Shimoda K, Oda S, Tanaka T, Nishiyama K, Mangmool S, et al.
    Front Pharmacol, 2018;9:523.
    PMID: 29872396 DOI: 10.3389/fphar.2018.00523
    Cardiac hypertrophy, induced by neurohumoral factors, including angiotensin II and endothelin-1, is a major predisposing factor for heart failure. These ligands can induce hypertrophic growth of neonatal rat cardiomyocytes (NRCMs) mainly through Ca2+-dependent calcineurin/nuclear factor of activated T cell (NFAT) signaling pathways activated by diacylglycerol-activated transient receptor potential canonical 3 and 6 (TRPC3/6) heteromultimer channels. Although extracellular nucleotide, adenosine 5'-triphosphate (ATP), is also known as most potent Ca2+-mobilizing ligand that acts on purinergic receptors, ATP never induces cardiomyocyte hypertrophy. Here we show that ATP-induced production of nitric oxide (NO) negatively regulates hypertrophic signaling mediated by TRPC3/6 channels in NRCMs. Pharmacological inhibition of NO synthase (NOS) potentiated ATP-induced increases in NFAT activity, protein synthesis, and transcriptional activity of brain natriuretic peptide. ATP significantly increased NO production and protein kinase G (PKG) activity compared to angiotensin II and endothelin-1. We found that ATP-induced Ca2+ signaling requires inositol 1,4,5-trisphosphate (IP3) receptor activation. Interestingly, inhibition of TRPC5, but not TRPC6 attenuated ATP-induced activation of Ca2+/NFAT-dependent signaling. As inhibition of TRPC5 attenuates ATP-stimulated NOS activation, these results suggest that NO-cGMP-PKG axis activated by IP3-mediated TRPC5 channels underlies negative regulation of TRPC3/6-dependent hypertrophic signaling induced by ATP stimulation.
  6. Kua KP, Lee SWH
    Front Pharmacol, 2017;8:396.
    PMID: 28690542 DOI: 10.3389/fphar.2017.00396
    Objective: To evaluate the effectiveness of combined epinephrine and corticosteroid therapy for acute bronchiolitis in infants. Methods: Four electronic databases (MEDLINE, EMBASE, CINAHL, and CENTRAL) were searched from their inception to February 28, 2017 for studies involving infants aged less than 24 months with bronchiolitis which assessed the use of epinephrine and corticosteroid combination therapy. The methodological quality of the included studies was assessed using the Cochrane Collaboration's Risk of Bias Tool. A random-effects meta-analysis was used to pool the effect estimates. The primary outcomes were hospital admission rate and length of hospital stay. Results: Of 1,489 citations identified, 5 randomized controlled trials involving 1,157 patients were included. All studies were of high quality and low risk of bias. Results of the meta-analysis showed no significant differences in the primary outcomes. Hospitalization rate was reduced by combinatorial therapy of epinephrine and corticosteroid in only one out of five studies, whereas pooled data indicated no benefit over epinephrine plus placebo. Clinical severity scores were significantly improved in all five RCTs when assessed individually, but no benefit was observed compared to epinephrine monotherapy when the data were pooled together. Pooled data showed that combination therapy was more effective at improving oxygen saturation level (mean difference: -0.70; 95% confidence interval: -1.17 to -0.22, p = 0.004). There was no difference in the risk of serious adverse events in infants treated with the combined epinephrine and corticosteroid therapy. Conclusions: Combination treatment of epinephrine and dexamethasone was ineffective in reducing hospital admission and length of stay among infants with bronchiolitis.
  7. Erukainure OL, Hafizur RM, Kabir N, Choudhary MI, Atolani O, Banerjee P, et al.
    Front Pharmacol, 2018;9:8.
    PMID: 29449808 DOI: 10.3389/fphar.2018.00008
    Type 2 diabetes is the most prominent of all diabetes types, contributing to global morbidity and mortality. Availability and cost of treatment with little or no side effect especially in developing countries, remains a huge burden. This has led to the search of affordable alternative therapies especially from medicinal plants. In this study, the antidiabetic effect of the methanolic extract, dichloromethane (DCM), butanol (BuOH) and aqueous fractions ofClerodendrum volubileleaves were investigated in type 2 diabetic rats for their effect on glucose homeostasis, serum insulin level and hepatic biomarkers, lipid profile, pancreatic redox balance and Ca2+levels, and β-cell distribution and function. The DCM was further fractionated to isolate the active compounds, biochanin and 5,7,4'-trimethoxykaempferol. They were investigated for their toxicity and ADMET properties, α-glucosidase and angiotensin I converting enzyme (ACE) inhibitory activitiesin silico. There were significant (p< 0.05) decrease in blood glucose, cholesterol, LDL-C, vLDL-C, triglyceride, AST and ALT levels in all treated groups, with DCM fraction showing the best activity. All treated rats showed significantly (p< 0.05) improved anti-oxidative activities. Treatment with the DCM fraction led to significant (p< 0.05) increased serum insulin and pancreatic Ca2+levels, as well as improved β-cell distribution and function. DCM fraction also showed improved glucose tolerance. DCM fraction dose-dependently inhibited ACE activity. The toxicity class of the isolated compounds was predicted to be 5. They were also predicted to be potent inhibitors of cytochrome P (CYPs) 1A2, 2D6 and 3A4. They docked well with α-glucosidase and ACE. These results indicate the therapeutic potential of the plant against type 2 diabetes, with the DCM fraction being the most potent which may be attributed to the isolated flavones. It further suggests antihypertensive potentials of the DCM fraction. However, inhibition of CYPs by the flavones may suggest caution in usage with other prescribed drugs metabolized by these enzymes.
  8. Ullah I, Subhan F, Alam J, Shahid M, Ayaz M
    Front Pharmacol, 2018;9:231.
    PMID: 29615907 DOI: 10.3389/fphar.2018.00231
    Cannabis sativa
    (CS, familyCannabinaceae) has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigateCSfor potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting. High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT), dopamine (DA) and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac), Homovanillic acid (HVA), and 5-hydroxy indole acetic acid (5HIAA) centrally in specific brain areas (area postrema and brain stem) while, peripherally in small intestine. Cisplatin (7 mg/kg i.v.) induce emesis without lethality across the 24 h observation period.CShexane fraction (CS-HexFr; 10 mg/kg) attenuated cisplatin-induced emesis ∼ 65.85% (P< 0.05); the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg), produced ∼43.90% reduction (P< 0.05). At acute time point (3rdh), CS-HexFr decreased (P< 0.001) the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18thh (delayed time point) CS-HexFr attenuated (P< 0.001) the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema.CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly. In conclusion the anti-emetic effect ofCS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rdand 18thh in pigeons.
  9. Kong BH, Tan NH, Fung SY, Pailoor J
    Front Pharmacol, 2016;7:246.
    PMID: 27555822 DOI: 10.3389/fphar.2016.00246
    Lignosus also known as "Tiger Milk Mushroom," is classified in the family Polyporaceae and mainly consumed for its medicinal properties in Southeast Asia and China. The sclerotium is known as the part with medicinal value and often used by the natives to treat a variety of ailments. Lignosus tigris Chon S. Tan, one of the species of the Malaysia Tiger Milk mushroom, has recently been successfully cultivated in laboratory. Earlier studies have demonstrated the L. tigris cultivar E sclerotia exhibited beneficial biomedicinal properties. This study evaluated the potential toxicity of L. tigris E sclerotia in a 28-day sub-acute oral administration in Sprague Dawley (SD) rats. L. tigris E sclerotial powder was administered orally at three different doses of 250, 500, and 1000 mg/kg to the SD rats once daily, consecutively for 28-days. Body weight of the rats was recorded and general behavior, adverse effects, and mortality were observed daily throughout the experimental period. At the end of the experiment, blood hematology and biochemistry, relative organ weights, and histopathological analysis were performed. Results showed that there were no mortality nor signs of toxicity throughout the 28-day sub-acute toxicity study. Oral administration of the L. tigris E sclerotial powder at daily dose up to 1000 mg/kg had no significant effects in body weight, relative organ weight, blood hematological and biochemistry, gross pathology, and histopathology of the organs. L. tigris E sclerotial powder did not cause any treatment-related adverse effect in the rats at different treatment dosages up to 1000 mg/kg. As the lethal dose for the rats is above 1000 mg/kg, the no-observed-adverse-effect level (NOAEL) dose is more than 1000 mg/kg.
  10. Velayutham NK, Thamaraikani T, Wahab S, Khalid M, Ramachawolran G, Abullais SS, et al.
    Front Pharmacol, 2023;14:1150270.
    PMID: 37056983 DOI: 10.3389/fphar.2023.1150270
    Vascular endothelial growth factor (VEGF) signals cell survival, cell migration, osteogenesis, cell proliferation, angiogenesis, and vascular permeability by binding to VEGF receptor 2 (VEGFR-2). Osteosarcoma is the most common primary bone cancer, majorly affects young adults. Activation of VEGFR-2 signaling is a therapeutic target for osteosarcoma. The present study aimed to evaluate the potency of stylopine in regulation of the VEGFR-2 signaling pathway and its anti-tumour effect human MG-63 osteosarcoma cells. The in silico study on benzylisoquinoline alkaloids was carried out for analyzing and shortlisting of compounds using a virtual screening, Lipinski's rule, bioavailability graphical RADAR plot, pharmacokinetics, toxicity, and molecular docking studies. Among the benzylisoquinoline alkaloids, stylopine was selected and subjected to in-vitro studies against human MG-63 osteosarcoma cells. Various experiments such as MTT assay, EtBr/AO staining, mitochondrial membrane potential assessment, transwell migration assay, gene expression analysis by a quantitative real time polymerase chain reaction (qRT-PCR) method, SDS-PAGE followed by immunoblotting were performed to evaluate its anti-tumour effect as compared to standard axitinib. The MTT assay indicates that stylopine inhibits cell proliferation in MG-63 cells. Similarly, as confirmed by the EtBr/Ao staining method, the MMP assay indicates that stylopine induces mitochondrial membrane damage and apoptosis as compared to axitinib. Moreover, stylopine inhibits the VEGF-165 induced MG-63 cell migration by a trans-well migration assay. The immunoblotting and qRT-PCR analysis showed that stylopine inhibits the VEGF-165 induced VEGFR2 expression in MG-63 cells. It is concluded that stylopine has potential to regulate VEGFR2 and can inhibit osteosarcoma cells to offer a new drug candidate for the treatment of bone cancer in future.
  11. Tan LT, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, et al.
    Front Pharmacol, 2017;8:276.
    PMID: 28567016 DOI: 10.3389/fphar.2017.00276
    Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography-mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.
  12. Vijayarathna S, Oon CE, Al-Zahrani M, Abualreesh MH, Chen Y, Kanwar JR, et al.
    Front Pharmacol, 2023;14:1198425.
    PMID: 37693900 DOI: 10.3389/fphar.2023.1198425
    Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia has anticancer activity; however, the detailed mechanisms of action still need to be well studied. Recent studies have revealed the cytotoxicity potential of P. longifolia leaf against HeLa cells. Therefore, the current study was conducted to examine the regulation of miRNAs in HeLa cancer cells treated with the standardized P. longifolia methanolic leaf extract (PLME). The regulation of miRNAs in HeLa cancer cells treated with the standardized PLME extract was studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing (NGS) and various in silico bioinformatics tools. The PLME treatment regulated a subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs associated with apoptosis induction. Gene ontology (GO) term analysis indicated that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes. Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa cells were identified, targeting apoptosis-related genes through gene ontology and pathway analysis. The LC-ESI-MS/MS analysis identified the presence of Vidarabine and Anandamide compounds that were previously reported to exhibit anticancer activity. The findings of this study obviously linked the cell cytotoxicity effect of PLME treatment against the HeLa cells with regulating various miRNAs expression related to apoptosis induction in the HeLa cells. PLME treatment induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs. The identified miRNAs regulated by PLME may provide further insight into the mechanisms that play a critical role in cervical cancer, as well as novel ideas regarding gene therapeutic strategies.
  13. Higuchi Y, Soga T, Parhar IS
    Front Pharmacol, 2018;9:1549.
    PMID: 30687104 DOI: 10.3389/fphar.2018.01549
    Stress induces various neurobiological responses and causes psychiatric disorders, including depression. Monoamine oxidase A (MAO-A) plays an important role in various functions of the brain, such as regulation of mood, anxiety and aggression, and dysregulation of MAO-A is observed in stress-related psychiatric disorders. This study addressed the question whether acute social stress induces changes to transcriptional and/or post-transcriptional regulation of MAO-A expression in the brain. Using male Nile tilapia (Oreochromis niloticus), we investigated whether acute social stress, induced by the presence of a dominant male fish, changes the expression of MAO-A. We measured gene expression of MAO-A by quantitative PCR, enzymatic activity of MAO-A by the luminescent method, and 5-HT and 5-HIAA levels by liquid chromatography-mass spectrometry in the brain of socially stressed and control fish. Socially stressed males showed decreased MAO-A mRNA levels, consistent MAO-A enzymatic activity, increased 5-HT turnover in the brain, and elevated plasma cortisol levels, compared to controls. Our results suggest that acute social stress suppresses the transcription of MAO-A gene, enhances 5-HT metabolism but does not affect the production of MAO-A protein.
  14. Palasuberniam P, Chan YW, Tan KY, Tan CH
    Front Pharmacol, 2021;12:727756.
    PMID: 35002690 DOI: 10.3389/fphar.2021.727756
    The Samar Cobra, Naja samarensis, is endemic to the southern Philippines and is a WHO-listed Category 1 venomous snake species of medical importance. Envenomation caused by N. samarensis results in neurotoxicity, while there is no species-specific antivenom available for its treatment. The composition and neutralization of N. samarensis venom remain largely unknown to date. This study thus aimed to investigate the venom proteome of N. samarensis for a comprehensive profiling of the venom composition, and to examine the immunorecognition as well as neutralization of its toxins by a hetero-specific antivenom. Applying C18 reverse-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (LC-MS/MS), three-finger toxins (3FTx) were shown to dominate the venom proteome by 90.48% of total venom proteins. Other proteins in the venom comprised snake venom metalloproteinases, phospholipases A2, cysteine-rich secretory proteins, venom nerve growth factors, L-amino acid oxidases and vespryn, which were present at much lower abundances. Among all, short-chain alpha-neurotoxins (SαNTX) were the most highly expressed toxin within 3FTx family, constituting 65.87% of the total venom proteins. The SαNTX is the sole neurotoxic component of the venom and has an intravenous median lethal dose (LD50) of 0.18 μg/g in mice. The high abundance and low LD50 support the potent lethal activity of N. samarensis venom. The hetero-specific antivenom, Philippine Cobra Antivenom (PCAV, raised against Naja philippinensis) were immunoreactive toward the venom and its protein fractions, including the principal SαNTX. In efficacy study, PCAV was able to cross-neutralize the lethality of SαNTX albeit the effect was weak with a low potency of 0.20 mg/ml (defined as the amount of toxin completely neutralized per milliliter of the antivenom). With a volume of 5 ml, each vial of PCAV may cross-neutralize approximately 1 mg of the toxin in vivo. The findings support the potential para-specific use of PCAV in treating envenomation caused by N. samarensis while underscoring the need to improve the potency of its neutralization activity, especially against the highly lethal alpha-neurotoxins.
  15. Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S
    Front Pharmacol, 2018;9:1088.
    PMID: 30319421 DOI: 10.3389/fphar.2018.01088
    In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
  16. Tieng FYF, Baharudin R, Abu N, Mohd Yunos RI, Lee LH, Ab Mutalib NS
    Front Pharmacol, 2020;11:135.
    PMID: 32174835 DOI: 10.3389/fphar.2020.00135
    Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for research, and a model for studying the molecular mechanisms involved in its development. Previously, bulk transcriptomics analyses were utilized to classify CRC based on its distinct molecular and clinicopathological features for prognosis and diagnosis of patients. The introduction of single-cell transcriptomics completely turned the table by enabling the examination of the expression levels of individual cancer cell within a single tumor. In this review, we highlighted the importance of these single-cell transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main focus of single-cell RNA sequencing. Characterization of these cells might reveal the intratumoral heterogeneity present in CRC while providing critical insights into cancer metastasis. To summarize, we believed the analysis of gene expression patterns of CTC from CRC at single-cell resolution holds the potential to provide key information for identification of prognostic and diagnostic markers as well as the development of precise and personalized cancer treatment.
  17. Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K
    Front Pharmacol, 2020;11:553404.
    PMID: 33628166 DOI: 10.3389/fphar.2020.553404
    Sinensetin, a plant-derived polymethoxylated flavonoid found in Orthosiphon aristatus var. aristatus and several citrus fruits, has been found to possess strong anticancer activities and a variety of other pharmacological benefits and promising potency in intended activities with minimal toxicity. This review aims to compile an up-to-date reports of published scientific information on sinensetin pharmacological activities, mechanisms of action and toxicity. The present findings about the compound are critically analyzed and its prospect as a lead molecule for drug discovery is highlighted. The databases employed for data collection are mainly through Google Scholar, PubMed, Scopus and Science Direct. In-vitro and in-vivo studies showed that sinensetin possessed strong anticancer activities and a wide range of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, anti-obesity, anti-dementia and vasorelaxant activities. The studies provided some insights on its several mechanisms of action in cancer and other disease states. However, more detail mechanistic studies are needed to understand its pharmacological effects. More in vivo studies in various animal models including toxicity, pharmacokinetic, pharmacodynamic and bioavailability studies are required to assess its efficacy and safety before submission to clinical studies. In this review, an insight on sinensetin pharmacological activities and mechanisms of action serves as a useful resource for a more thorough and comprehensive understanding of sinensetin as a potential lead candidate for drug discovery.
  18. Nežić L, Amidžić L, Škrbić R, Gajanin R, Nepovimova E, Vališ M, et al.
    Front Pharmacol, 2019;10:54.
    PMID: 30828299 DOI: 10.3389/fphar.2019.00054
    Endotoxemia is associated by dysregulated apoptosis of immune and non-immune cells. We investigated whether simvastatin has anti-apoptotic effects, and induces hepatocytes and lymphocytes survival signaling in endotoxin-induced liver and spleen injuries. Wistar rats were divided into the groups pretreated with simvastatin (20 or 40 mg/kg, orally) prior to a non-lethal dose of lipopolysaccharide (LPS), the LPS group, and the control. The severity of tissue inflammatory injuries was expressed as hepatic damage scores (HDS) and spleen damage scores (SDS), respectively. The apoptotic cell was detected by TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) and immunohistochemical staining (expression of cleaved caspase-3, and anti-apoptotic Bcl-xL, survivin and NF-κB/p65). Simvastatin dose-dependently abolished HDS and SDS induced by LPS (p < 0.01), respectively. Simvastatin 40 mg/kg significantly decreased apoptotic index and caspase-3 cleavage in hepatocytes and lymphocytes (p < 0.01 vs. LPS group, respectively), while Bcl-XL markedly increased accordingly with simvastatin doses. In the simvastatin, groups were determined markedly increased cytoplasmic expression of survivin associated with nuclear positivity of NF-κB, in both hepatocytes and lymphocytes (p < 0.01 vs. LPS group). Cell-protective effects of simvastatin against LPS seemed to be mediated by up-regulation of survivin, which leads to reduced caspase-3 activation and inhibition of hepatocytes and lymphocytes apoptosis.
  19. Chen L, Jiang X, Gao S, Liu X, Gao Y, Kow ASF, et al.
    Front Pharmacol, 2022;13:1032069.
    PMID: 36386146 DOI: 10.3389/fphar.2022.1032069
    ABT-199 (venetoclax) is the first-in-class selective B-cell lymphoma 2 (BCL2) inhibitor, which is known to be ineffective towards liver cancer cells. Here, we investigated the efficacy and the underlying molecular processes of the sensitization effect of kaempferol isolated from persimmon leaves (KPL) on the ABT-199-resistant HepG2 cells. The effects of various doses of KPL coupled with ABT-199 on the proliferation of HepG2 cells and on the H22 liver tumor-bearing mouse model were examined, as well as the underlying mechanisms. Our findings showed that ABT-199 alone, in contrast to KPL, had no significant impact on hepatoma cell growth, both in vitro and in vivo. Interestingly, the combination therapy showed significantly higher anti-hepatoma efficacy. Mechanistic studies revealed that combining KPL and ABT-199 may promote both early and late apoptosis, as well as decrease the mitochondrial membrane potential in HepG2 cells. Western blot analysis showed that combination of KPL and ABT-199 significantly reduced the expression of the anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, raised the expression of Bax and cleaved caspase 3, and enhanced cytochrome C release and Bax translocation. Therefore, KPL combined with ABT-199 has a potential application prospect in the treatment of hepatocellular carcinoma.
  20. Muhammad Ismail Tadj NB, Ibrahim NI, Tg Abu Bakar Sidik TMI, Zulfarina MS, Haji Mohd Saad Q, Leow SS, et al.
    Front Pharmacol, 2023;14:1190663.
    PMID: 37484009 DOI: 10.3389/fphar.2023.1190663
    Introduction: Oil palm phenolic (OPP) is an antioxidant aqueous palm oil by-product and contains a high amount of phenolics. OPP has been proven to have many therapeutical benefits, and one of them is as an antihyperlipidemic agent. The previous phase 1 clinical trial proved OPP was safe to be orally consumed by healthy volunteers and yielded a good lipid profile. Thus, this phase 2 clinical trial was conducted to determine the effectiveness of OPP in improving the lipid profile among hyperlipidemic subjects. Methods: A parallel, placebo-controlled, randomized, double-blinded clinical trial was conducted for 2 months on 50 hyperlipidemic subjects aged 20-50 years old. The subjects were randomly distributed to two treatment arms with 25 participants each: control/placebo (11 males and 14 females) and 250 mg of OPP (10 males and 15 females). The subjects were required to consume one capsule per day for 60 days. Fasting blood sampling for routine blood profile (hematology, liver function, renal function, and lipid) analysis and a medical examination were conducted at baseline, day 30, and day 60. t-test analysis was used to compare the difference between two test groups. Results: The baseline lipid profile between control group (TC, 5.78 ± 0.52 mmol/L; LDL, 3.88 ± 0.51 mmol/L; HDL, 1.30 ± 0.25; TG, 1.30 ± 0.82), and 250 mg OPP (TC, 5.76 ± 0.54 mmol/L; LDL, 3.82 ± 0.59 mmol/L; HDL, 1.37 ± 0.34; TG, 1.25 ± 0.54) is insignificant. No serious adverse events (SAEs) were reported. No abnormality in fasting blood parameters in all groups was found. Compared to the control group among male participants, the 250 mg OPP group showed an improved serum triglyceride level. There were no statistically significant changes in all blood parameters from day 1 to day 60 with the exception of triglyceride level. Conclusion: The absence of SAEs reported and no abnormal findings in biochemistry and hematology results suggested that the 250 mg OPP was safe to be taken by hyperlipidemic patients with a high probability of reducing triglyceride level in hyperlipidemic male patients The outcomes from this phase II trial suggest that by incorporating OPP supplements into the diet may be a promising strategy for individuals with hyperlipidemia to improve their lipid profiles and reduce cardiovascular risk. However, more research is needed to fully understand the mechanisms of action and establish the long-term efficacy and safety of OPP supplementation in larger scale. Limitation: Small samples size hence lack of diversity (25 subjects per groups) and early sharing of treatment-response results. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04573218.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links