Displaying publications 1 - 20 of 146 in total

  1. Abu N, Yeap SK, Pauzi AZ, Akhtar MN, Zamberi NR, Ismail J, et al.
    Front Pharmacol, 2016;7:89.
    PMID: 27065873 DOI: 10.3389/fphar.2016.00089
    The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways.
  2. Chellian R, Pandy V, Mohamed Z
    Front Pharmacol, 2016;7:72.
    PMID: 27065863 DOI: 10.3389/fphar.2016.00072
    Alpha (α)-asarone is one of the main psychoactive compounds, present in Acorus species. Evidence suggests that the α-asarone possess an antidepressant-like activity in mice. However, the exact dose-dependent effect of α-asarone and mechanism(s) involved in the antidepressant-like activity are not clear. The present study aimed to investigate the dose-dependent effect of α-asarone and the underlining mechanism(s) involved in the antidepressant-like activity of α-asarone in the mouse model of tail suspension test (TST). In this study, the acute effect of α-asarone per se at different doses (10-100 mg/kg, i.p.) on immobility in the TST was studied. Additionally, the possible mechanism(s) involved in the antidepressant-like effect of α-asarone was studied using its interaction with noradrenergic and serotonergic neuromodulators in the TST. The present results reveal that the acute treatment of α-asarone elicited biphasic responses on immobility such that the duration of the immobility time is significantly reduced at lower doses (15 and 20 mg/kg, i.p.) but increased at higher doses (50 and 100 mg/kg, i.p.) in the TST. Besides, α-asarone at higher doses (50 and 100 mg/kg, i.p.) significantly decreased the spontaneous locomotor activity. Moreover, pretreatment of mice with noradrenergic neuromodulators such as AMPT (100 mg/kg, i.p., a catecholamine synthesis inhibitor), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist) and with serotonergic neuromodulators such as PCPA (100 mg/kg, i.p., once daily for four consecutive days, a serotonin synthesis inhibitor,) and WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) significantly reversed the anti-immobility effect of α-asarone (20 mg/kg, i.p.). Taken together, our results suggest that the acute treatment with α-asarone elicited biphasic actions in the TST in which antidepressant-like effect was seen at relatively lower doses (15 and 20 mg/kg, i.p.) and depressive-like activity at relatively higher doses (50 and 100 mg/kg, i.p.). Furthermore, it has been revealed that the antidepressant-like effect of α-asarone could be mediated through both noradrenergic (α1 and α2 adrenoceptors) and serotonergic (particularly, 5-HT1A receptors) systems.
  3. Ahmad W, Jantan I, Bukhari SN
    Front Pharmacol, 2016;7:59.
    PMID: 27047378 DOI: 10.3389/fphar.2016.00059
    Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae), found in the rainforests or mixed deciduous forests in Asia and Africa, is used in traditional medicines to treat numerous health conditions. This review summarizes the up-to-date reports about the ethnobotany, phytochemistry, pharmacological activities, toxicology, and clinical trials of the plant. It also provides critical assessment about the present knowledge of the plant which could contribute toward improving its prospect as a source of lead molecules for drug discovery. The plant has been used traditionally in the treatment of jaundice, rheumatism, urinary disorders, fever, malaria, diabetes, internal inflammation, fracture, scabies, hypertension, reducing thirst, increasing appetite, cooling down the body temperature, and maintaining good health. Phytochemical analyses of T. crispa revealed the presence of alkaloids, flavonoids, and flavone glycosides, triterpenes, diterpenes and diterpene glycosides, cis clerodane-type furanoditerpenoids, lactones, sterols, lignans, and nucleosides. Studies showed that the crude extracts and isolated compounds of T. crispa possessed a broad range of pharmacological activities such as anti-inflammatory, antioxidant, immunomodulatory, cytotoxic, antimalarial, cardioprotective, and anti-diabetic activities. Most pharmacological studies were based on crude extracts of the plant and the bioactive compounds responsible for the bioactivities have not been well identified. Further investigations are required to transform the experience-based claims on the use of T. crispa in traditional medicine practices into evidence-based information. The plant extract used in pharmacological and biological studies should be qualitatively and quantitatively analyzed based on its biomarkers. There should be detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more elaborate toxicity study to ensure safety of the plant for human use. More clinical trials are encouraged to be carried out if there are sufficient preclinical and safety data.
  4. Tan HL, Chan KG, Pusparajah P, Lee LH, Goh BH
    Front Pharmacol, 2016;7:52.
    PMID: 27014066 DOI: 10.3389/fphar.2016.00052
    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective, and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilized for the development of novel therapeutic agents.
  5. Chen Y, Phang WM, Mu AK, Chan CK, Low BS, Sasidharan S, et al.
    Front Pharmacol, 2015;6:211.
    PMID: 26441666 DOI: 10.3389/fphar.2015.00211
    Eurycoma longifolia is a Malaysian native herb that has been widely used as an aphrodisiac and a remedy for andropause. Although the physiological effects of the plant extract were predicted as a result of the alterations in protein expression, the key protein(s) involved in these alterations are still unclear. In the present study, we have investigated the effect of standardized E. longifolia extract on serum protein expression up to 28 days following oral administration in rats. Serum protein profiles were analyzed by 2-dimensional electrophoresis, and altered proteins were identified via mass spectrometry. We observed that alpha-2-HS glycoprotein (AHS) was significantly decreased in the serum of experimentally treated rats compared to pre-treated animals. Moreover, reduction in AHS was confirmed using competitive enzyme-linked immunosorbent assay. AHS expression is known to be associated with insulin resistance and diabetes. Our data indicated that serum AHS was reduced in rats treated with standardized E. longifolia extract, and therefore form a prelude for further investigation into the effects of this natural extract in animal models involving infertility and diabetes.
  6. Chua EW, Cree SL, Ton KN, Lehnert K, Shepherd P, Helsby N, et al.
    Front Pharmacol, 2016;7:1.
    PMID: 26858644 DOI: 10.3389/fphar.2016.00001
    Whole-exome sequencing (WES) has been widely used for analysis of human genetic diseases, but its value for the pharmacogenomic profiling of individuals is not well studied. Initially, we performed an in-depth evaluation of the accuracy of WES variant calling in the pharmacogenes CYP2D6 and CYP2C19 by comparison with MiSeq(®) amplicon sequencing data (n = 36). This analysis revealed that the concordance rate between WES and MiSeq(®) was high, achieving 99.60% for variants that were called without exceeding the truth-sensitivity threshold (99%), defined during variant quality score recalibration (VQSR). Beyond this threshold, the proportion of discordant calls increased markedly. Subsequently, we expanded our findings beyond CYP2D6 and CYP2C19 to include more genes genotyped by the iPLEX(®) ADME PGx Panel in the subset of twelve samples. WES performed well, agreeing with the genotyping panel in approximately 99% of the selected pass-filter variant calls. Overall, our results have demonstrated WES to be a promising approach for pharmacogenomic profiling, with an estimated error rate of lower than 1%. Quality filters, particularly VQSR, are important for reducing the number of false variants. Future studies may benefit from examining the role of WES in the clinical setting for guiding drug therapy.
  7. Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, et al.
    Front Pharmacol, 2015;6:313.
    PMID: 26858642 DOI: 10.3389/fphar.2015.00313
    The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
  8. Mai CW, Yap KS, Kho MT, Ismail NH, Yusoff K, Shaari K, et al.
    Front Pharmacol, 2016;7:7.
    PMID: 26869924 DOI: 10.3389/fphar.2016.00007
    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-Blue(TM)-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-Blue(TM)-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.
  9. Manda VK, Dale OR, Awortwe C, Ali Z, Khan IA, Walker LA, et al.
    Front Pharmacol, 2014;5:178.
    PMID: 25152732 DOI: 10.3389/fphar.2014.00178
    Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally used in a number of women's health applications such as to improve libido, relieve postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the constituents of this plant have been reported to possess anticancer, antioxidant, and anti-inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of drug-drug interactions which alter the absorption, distribution, and metabolism of drugs. Given the widespread use of Kacip Fatimah in dietary supplements, the current study focuses on determining the potential of its constituents to affect the activities of CYPs, P-gp, or PXR using in vitro assays which may provide useful information toward the risk of herb-drug interaction with concomitantly used drugs. Six compounds isolated from the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the methanolic extract. The extract of L. pumila showed a significant time dependent inhibition (TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of 1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used concomitantly.
  10. Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, et al.
    Front Pharmacol, 2016;7:191.
    PMID: 27445824 DOI: 10.3389/fphar.2016.00191
    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
  11. Ashraf MU, Muhammad G, Hussain MA, Bukhari SN
    Front Pharmacol, 2016;7:163.
    PMID: 27445806 DOI: 10.3389/fphar.2016.00163
    Cydonia oblonga M. is a medicinal plant of family Rosaceae which is used to prevent or treat several ailments such as cancer, diabetes, hepatitis, ulcer, respiratory, and urinary infections, etc. Cydonia oblonga commonly known as Quince is rich in useful secondary metabolites such as phenolics, steroids, flavonoids, terpenoids, tannins, sugars, organic acids, and glycosides. A wide range of pharmacological activities like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, cardiovascular, antidepressant, antidiarrheal, hypolipidemic, diuretic, and hypoglycemic have been ascribed to various parts of C. oblonga. The polysaccharide mucilage, glucuronoxylan extruded from seeds of C. oblonga is used in dermal patches to heal wounds. This review focuses on detailed investigations of high-valued phytochemicals as well as pharmacological and phytomedicinal attributes of the plant.
  12. Kong BH, Tan NH, Fung SY, Pailoor J
    Front Pharmacol, 2016;7:246.
    PMID: 27555822 DOI: 10.3389/fphar.2016.00246
    Lignosus also known as "Tiger Milk Mushroom," is classified in the family Polyporaceae and mainly consumed for its medicinal properties in Southeast Asia and China. The sclerotium is known as the part with medicinal value and often used by the natives to treat a variety of ailments. Lignosus tigris Chon S. Tan, one of the species of the Malaysia Tiger Milk mushroom, has recently been successfully cultivated in laboratory. Earlier studies have demonstrated the L. tigris cultivar E sclerotia exhibited beneficial biomedicinal properties. This study evaluated the potential toxicity of L. tigris E sclerotia in a 28-day sub-acute oral administration in Sprague Dawley (SD) rats. L. tigris E sclerotial powder was administered orally at three different doses of 250, 500, and 1000 mg/kg to the SD rats once daily, consecutively for 28-days. Body weight of the rats was recorded and general behavior, adverse effects, and mortality were observed daily throughout the experimental period. At the end of the experiment, blood hematology and biochemistry, relative organ weights, and histopathological analysis were performed. Results showed that there were no mortality nor signs of toxicity throughout the 28-day sub-acute toxicity study. Oral administration of the L. tigris E sclerotial powder at daily dose up to 1000 mg/kg had no significant effects in body weight, relative organ weight, blood hematological and biochemistry, gross pathology, and histopathology of the organs. L. tigris E sclerotial powder did not cause any treatment-related adverse effect in the rats at different treatment dosages up to 1000 mg/kg. As the lethal dose for the rats is above 1000 mg/kg, the no-observed-adverse-effect level (NOAEL) dose is more than 1000 mg/kg.
  13. Khan Y, Pandy V
    Front Pharmacol, 2016;7:352.
    PMID: 27729866
    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.
  14. Aminuddin A, Ng PY
    Front Pharmacol, 2016;7:244.
    PMID: 27570510 DOI: 10.3389/fphar.2016.00244
    Canonical Wnt signaling pathway, also known as Wnt/β-catenin signaling pathway, is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration, and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. Furthermore, the canonical Wnt signaling pathway has also been described as one of the critical signaling pathways for regulation of normal stem cells as well as cancer cells with stem cell-like features, termed cancer stem cells (CSC). In this review, we will briefly describe the basic mechanisms of Wnt signaling pathway and its crucial roles in the normal regulation of cellular processes as well as in the development of cancer. Next, we will highlight the roles of canonical Wnt signaling pathway in the regulation of CSC properties namely self-renewal, differentiation, metastasis, and drug resistance abilities, particularly in head and neck squamous cell carcinoma. Finally, we will examine the findings of several recent studies which explore druggable targets in the canonical Wnt signaling pathway which could be valuable to improve the treatment outcome for head and neck cancer.
  15. Sulaiman SA, Ab Mutalib NS, Jamal R
    Front Pharmacol, 2016;7:271.
    PMID: 27601996 DOI: 10.3389/fphar.2016.00271
    Among the gynecological malignancies, ovarian cancer is the most fatal due to its high mortality rate. Most of the identified cases are epithelial ovarian cancer (EOC) with five distinct subtypes: high-grade serous carcinoma, low-grade serous carcinoma, mucinous carcinoma, endometrioid carcinoma, and clear-cell carcinoma. Lack of an early diagnostic approach, high incidence of tumor relapse and the heterogenous characteristics between each EOC subtypes contribute to the difficulties in developing precise intervention and therapy for the patients. MicroRNAs (miRNAs) are single-stranded RNAs that have been shown to function as tumor suppressors or oncomiRs. The miR-200 family, especially miR-200c, has been shown to be implicated in the metastasis and invasion of ovarian carcinoma due to its functional regulation of epithelial-to-mesenchymal transition (EMT). This mini review is aimed to summarize the recent findings of the miR-200c functional role as well as its validated targets in the metastasis cascade of ovarian cancer, with a focus on EMT regulation. The potential of this miRNA in early diagnosis and its dual expression status are also discussed.
  16. Tan HL, Chan KG, Pusparajah P, Duangjai A, Saokaew S, Mehmood Khan T, et al.
    Front Pharmacol, 2016;7:362.
    PMID: 27774066
    Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality in both the developed and developing world. Rhizoma coptidis (RC), known as Huang Lian in China, is the dried rhizome of medicinal plants from the family Ranunculaceae, such as Coptis chinensis Franch, C. deltoidea C.Y. Cheng et Hsiao, and C. teeta Wall which has been used by Chinese medicinal physicians for more than 2000 years. In China, RC is a common component in traditional medicines used to treat CVD associated problems including obesity, diabetes mellitus, hyperlipidemia, hyperglycemia and disorders of lipid metabolism. In recent years, numerous scientific studies have sought to investigate the biological properties of RC to provide scientific evidence for its traditional medical uses. RC has been found to exert significant beneficial effects on major risk factors for CVDs including anti-atherosclerotic effect, lipid-lowering effect, anti-obesity effect and anti-hepatic steatosis effect. It also has myocardioprotective effect as it provides protection from myocardial ischemia-reperfusion injury. These properties have been attributed to the presence of bioactive compounds contained in RC such as berberine, coptisine, palmatine, epiberberine, jatrorrhizine, and magnoflorine; all of which have been demonstrated to have cardioprotective effects on the various parameters contributing to the occurrence of CVD through a variety of pathways. The evidence available in the published literature indicates that RC is a herb with tremendous potential to reduce the risks of CVDs, and this review aims to summarize the cardioprotective properties of RC with reference to the published literature which overall indicates that RC is a herb with remarkable potential to reduce the risks and damage caused by CVDs.
  17. Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MF
    Front Pharmacol, 2016;7:291.
    PMID: 27625609 DOI: 10.3389/fphar.2016.00291
    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl.
  18. Chua EW, Ng PY
    Front Pharmacol, 2016;7:156.
    PMID: 27378921 DOI: 10.3389/fphar.2016.00156
    The launch of the MinION Access Program has caused much activity within the scientific community. MinION represents a keenly anticipated, novel addition to the current melange of commercial sequencers. Driven by the nanopore sequencing mechanism that requires minimal sample manipulation, the device is capable of generating long sequence reads in sizes (up to or exceeding 50 kb) that surpass those of all other platforms. One notable advantage of this feature is that long-range haplotypes can be more accurately resolved; such advantage is particularly pertinent to the genotyping of complex loci such as genes encoding the human leukocyte antigens, which are pivotal determinants of drug hypersensitivity. With this timely, albeit brief, review, we set out to examine the applications on which MinION has been tested thus far, the bioinformatics workflow tailored to the unique characteristics of its extended sequence reads, the device's potential utility in the detection of genetic markers for drug hypersensitivity, and how it may eventually evolve to become fit for diagnostic purposes in the clinical setting.
  19. Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A, et al.
    Front Pharmacol, 2017;8:5.
    PMID: 28197098 DOI: 10.3389/fphar.2017.00005
    Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links