Displaying publications 41 - 60 of 114 in total

Abstract:
Sort:
  1. Tan XQ, Zhang P, Chen B, Mohamed AR, Ong WJ
    J Colloid Interface Sci, 2024 Feb 09;662:870-882.
    PMID: 38382371 DOI: 10.1016/j.jcis.2024.02.027
    The extensive examination of hexagonal molybdenum carbide (β-Mo2C) as a non-noble cocatalyst in the realm of photocatalytic H2 evolution is predominantly motivated by its exceptional capacity to adsorb H+ ions akin to Pt and its advantageous conductivity characteristics. However, the H2 evolution rate of photocatalysts modified with β-Mo2C is limited as a result of their comparatively low ability to release H through desorption. Therefore, a facile method was employed to synthesize carbon intercalated dual phase molybdenum carbide (MC@C) quantum dots (ca. 3.13 nm) containing both α-MoC and β-Mo2C decorated on g-C3N4 (gCN). The synthesis process involved a simple and efficient combination of sonication-assisted self-assembly and calcination techniques. 3-MC@C/gCN exhibited the highest efficiency in generating H2, with a rate of 4078 µmol g-1h-1 under 4 h simulated sunlight irradiation, which is 13 times higher than pristine gCN. Furthermore, from the cycle test, 3-MC@C/gCN showcased exceptional photochemical stability of 65 h, as it maintained a H2 evolution rate of 40 mmol g-1h-1. The heightened level of activity observed in the 3-MC@C/gCN system can be ascribed to the synergistic effects of MoC-Mo2C that arise due to the existence of a carbon layer. The presence of a carbon layer enhanced the transmission of photoinduced electrons, while the MoC-Mo2C@C composite served as active sites, thereby facilitating the H2 production reaction of gCN. The present study introduces a potentially paradigm-shifting concept pertaining to the exploration of novel Mo-based cocatalysts with the aim of augmenting the efficacy of photocatalytic H2 production.
  2. Gasim MF, Veksha A, Lisak G, Low SC, Hamidon TS, Hussin MH, et al.
    J Colloid Interface Sci, 2023 Mar 15;634:586-600.
    PMID: 36549207 DOI: 10.1016/j.jcis.2022.12.072
    Herein, five N, S-co-doped carbocatalysts were prepared from different carbonaceous precursors, namely sawdust (SD), biochar (BC), carbon-nanotubes (CNTs), graphite (GP), and graphene oxide (GO) and compared. Generally, as the graphitization degree increased, the extent of N and S doping decreased, graphitic N configuration is preferred, and S configuration is unaltered. As peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal, the catalytic performance was in order: NS-CNTs (0.037 min-1) > NS-BC (0.032 min-1) > NS-rGO (0.024 min-1) > NS-SD (0.010 min-1) > NS-GP (0.006 min-1), with the carbonaceous properties, rather than the heteroatoms content and textural properties, being the major factor affecting the catalytic performance. NS-CNTs was found to have the supreme catalytic activity due to its remarkable conductivity (3.38 S m-1) and defective sites (ID/IG = 1.28) with high anti-interference effect against organic and inorganic matter and varying water matrixes. The PMS activation pathway was dominated by singlet oxygen (1O2) generation and electron transfer regime between CIP and PMS activated complexes. The CIP degradation intermediates were identified, and a degradation pathway is proposed. Overall, this study provides a better understanding of the importance of selecting a suitable carbonaceous platform for heteroatoms doping to produce superior PMS activator for antibiotics decontamination.
  3. Ran NH, Yuliati L, Lee SL, Mahlia TM, Nur H
    J Colloid Interface Sci, 2013 Mar 15;394:490-7.
    PMID: 23380399 DOI: 10.1016/j.jcis.2012.12.045
    A microparticle material of gold/polystyrene-coated hollow titania was successfully synthesized. The synthesis steps involved hydrothermal synthesis of a carbon sphere from sucrose as a template, coating of the carbon sphere with titania, removal of the carbon sphere to produce hollow titania, followed by coating of polystyrene on the surface of hollow titania and then attachment of gold nanoparticles. It has been demonstrated that this material can float on water due to its low density and it is a potential catalyst for liquid-gas boundary catalysis in oxidation of benzyl alcohol by using molecular oxygen.
  4. Sim YL, Yusof NS, Ariffin A, Niyaz Khan M
    J Colloid Interface Sci, 2011 Aug 1;360(1):182-8.
    PMID: 21549387 DOI: 10.1016/j.jcis.2011.04.021
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-(2'-methoxyphenyl)phthalimide (1) decrease nonlinearly with increasing total concentration of nonionic surfactant C(m)E(n) (i.e. [C(m)E(n)](T) where m and n represent the respective number of methyl/methylene units in the tail and polyoxyethylene units in the headgroup of a surfactant molecule and m/n=16/20, 12/23 and 18/20) at constant 2% v/v CH(3)CN and 1.0 mM NaOH. The k(obs)vs. [C(m)E(n)](T) data follow the pseudophase micellar (PM) model at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 2.0 mM C(18)E(20) where rate of hydrolysis of 1 in micellar pseudophase could not be detected. The values of k(obs) fail to follow the PM model at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼2.0 mM C(18)E(20) which has been attributed to a micellar structural transition from spherical to rodlike which in turn increases C(m)E(n) micellar binding constant (K(S)) of 1 with increasing values of [C(m)E(n)](T). Rheological measurements show the presence of spherical micelles at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 3.0 mM C(18)E(20). The presence of rodlike micelles is evident from rheological measurements at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼3.0 mM C(18)E(20).
  5. Yusof NS, Niyaz Khan M
    J Colloid Interface Sci, 2011 May 1;357(1):121-8.
    PMID: 21333302 DOI: 10.1016/j.jcis.2011.01.061
    The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.
  6. Rusmin R, Sarkar B, Mukhopadhyay R, Tsuzuki T, Liu Y, Naidu R
    J Colloid Interface Sci, 2021 Sep 22;608(Pt 1):575-587.
    PMID: 34628317 DOI: 10.1016/j.jcis.2021.09.109
    Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g-1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption-desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.
  7. Ahmad AL, Mustafa NN
    J Colloid Interface Sci, 2006 Sep 15;301(2):575-84.
    PMID: 16797579
    The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.
  8. Azlin-Hasim S, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA
    J Colloid Interface Sci, 2016 Jan 01;461:239-248.
    PMID: 26402783 DOI: 10.1016/j.jcis.2015.09.021
    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.
  9. Sin JC, Lam SM, Lee KT, Mohamed AR
    J Colloid Interface Sci, 2013 Jul 1;401:40-9.
    PMID: 23618322 DOI: 10.1016/j.jcis.2013.03.043
    A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
  10. Lam SM, Sin JC, Abdullah AZ, Mohamed AR
    J Colloid Interface Sci, 2015 Jul 15;450:34-44.
    PMID: 25801130 DOI: 10.1016/j.jcis.2015.02.075
    Highly effective WO3/ZnO nanorods (NRs) were synthesized via a hydrothermal-deposition method for degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under natural sunlight. The structural properties of WO3/ZnO NRs such as morphology, crystal structure, porous properties and light absorption characteristics were investigated in detail. The X-ray diffraction and X-ray photoelectron spectroscopy results indicated that the prepared samples were two-phase photocatalysts consisted of WO3 and ZnO NRs. The UV-vis diffuse reflectance spectroscopy result showed that the addition of WO3 altered the optical properties of the photocatalysts. In contrast with the pure ZnO NRs, commercial anatase TiO2 and commercial WO3, the WO3/ZnO NRs showed excellent sunlight photocatalytic activities in degrading 2,4-D. The optimal WO3 loading and calcination temperature were also determined. Based on the band position, the synergetic effect of WO3 and ZnO NRs was the source of the enhanced photocatalytic activity as validated by PL and terephthalic acid-photoluminescence measurements. The reaction intermediates and degradation pathways of 2,4-D were elucidated by a HPLC method. In addition, the extent of mineralization during the 2,4-D degradation was also estimated using total organic carbon (TOC) and ion chromatography (IC) analyses.
  11. Hashemifard SA, Ismail AF, Matsuura T
    J Colloid Interface Sci, 2011 Jul 15;359(2):359-70.
    PMID: 21529819 DOI: 10.1016/j.jcis.2011.03.077
    This study investigated the gas separation and transport properties of asymmetric mixed matrix membranes (MMM) fabricated from polyetherimide (PEI); Ultem 1000 incorporated with raw and modified halloysite nanotubes (HNT) as filler. The modified HNTs; S-HNTs were prepared by treating HNTs with N-β-(aminoethyl)-γ-aminopropyltrimethoxy silane (AEAPTMS). FESEM, XRD, FTIR, TGA, DSC and pure gas permeation testing were used to characterise the S-HNTs and the fabricated MMMs. In the first part of the experiments, the effect of dope preparation factors such as: ultrasonic sonication period, filler wetting period and priming period were investigated. In the second part, the influence of silane concentration on the fabricated MMMs was studied. Results showed that, increasing the silane concentration, led to higher tendency in HNT agglomeration which resulted in poor separation properties but permeability enhancement. In the last part, the effect of S-HNTs loading was experienced. Our observations showed that the dispersion of nanoparticles decreased with an increase in the S-HNTs loading. Accordingly, 0.5% loading of silylated-HNT yielded the optimum MMMs in terms of permeability (27% increase) and selectivity (8% increase).
  12. Guo J, Lua AC
    J Colloid Interface Sci, 2002 Jul 15;251(2):242-7.
    PMID: 16290726
    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.
  13. Pan F, Lu Z, Tucker I, Hosking S, Petkov J, Lu JR
    J Colloid Interface Sci, 2016 Dec 15;484:125-134.
    PMID: 27599381 DOI: 10.1016/j.jcis.2016.08.082
    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.
  14. Pan F, Li Z, Gong H, Petkov JT, Lu JR
    J Colloid Interface Sci, 2018 Dec 01;531:18-27.
    PMID: 30015167 DOI: 10.1016/j.jcis.2018.07.031
    Surfactants are multifunctional molecules widely used in personal care and healthcare formulations to cleanse, help disperse active ingredients (e.g., forming emulsions) and stabilise products. With increasing demands on improving biosafety, there is now mounting pressure to understand how different surfactants elicit toxicities at molecular and cellular levels. This work reports the membrane-lytic behaviour of a group of sulphonated methyl ester (SME) surfactants together with representative conventional surfactants. All surfactants displayed the clear rise of lysis of the model lipid bilayer membranes around their CMCs, but the two ionic surfactants SDS and C12TAB even caused measurable lysis below their CMCs, with membrane-lytic actions increasing with monomer concentration. Furthermore, whilst ionic and nonionic surfactants could achieve full membrane lysis once above their CMCs, this ability was weak from the SME surfactants and decreased with increasing the acyl chain length. In contrast to the conventional anionic surfactants such as SDS and SLES, the protein solubilizing capability of the SME surfactants was also low. On the other hand, MTT assays against 3T3 fibroblast cells and human chondrocyte cells revealed high toxicity from SDS and C12TAB against the other surfactants studied, but the difference between SME and the rest of conventional surfactants was small. Similar behaviour was also observed in their bactericidal effect against E. coli and S. aureus. The trend is broadly consistent with their membrane-lytic behaviour, indicating little selectivity in their cytotoxicity and bactericidal action. These results thus reveal different toxicities implicated from different surfactant head groups. Increase in acyl chain length as observed from SME surfactants could help improve surfactant biocompatibility.
  15. Lim J, Yeap SP, Leow CH, Toh PY, Low SC
    J Colloid Interface Sci, 2014 May 1;421:170-7.
    PMID: 24594047 DOI: 10.1016/j.jcis.2014.01.044
    Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate.
  16. Chen JH, Choo YSL, Wang XH, Liu YJ, Yue XB, Gao XL, et al.
    J Colloid Interface Sci, 2023 Apr 06;643:62-72.
    PMID: 37044014 DOI: 10.1016/j.jcis.2023.04.011
    Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising alternative to proton exchange membrane fuel cells (PEMFCs) due to their adaptability to low-cost stack components and non-noble-metals catalysts. However, the poor alkaline resistance and low OH- conductivity of anion exchange membranes (AEMs) have impeded the large-scale implementation of AEMFCs. Herein, the preparation of a new type of AEMs with crown ether macrocycles in their main chains via a one-pot superacid catalyzed reaction was reported. The study aimed to examine the influence of crown ether cavity size on the phase separation structure, ionic conductivity and alkali resistance of anion exchange membranes. Attributed to the self-assembly of crown ethers, the poly (crown ether) (PCE) AEMs with dibenzo-18-crown-6-ether (QAPCE-18-6) exhibit an obvious phase separated structure and a maximum OH- conductivity of 122.5 mS cm-1 at 80 °C (ionic exchange capacity is 1.51 meq g-1). QAPCE-18-6 shows a good alkali resistance with the OH- conductivity retention of 94.5% albeit being treated in a harsh alkali condition. Moreover, the hydrogen/oxygen single cell equipped with QAPCE-18-6 can achieve a peak power density (PPD) of 574 mW cm-2 at a current density of 1.39 A cm-2.
  17. Lin XR, Kwon E, Hung C, Huang CW, Oh WD, Lin KA
    J Colloid Interface Sci, 2021 Feb 15;584:749-759.
    PMID: 33176929 DOI: 10.1016/j.jcis.2020.09.104
    As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.
  18. Nguyen HT, Lee J, Kwon E, Lisak G, Thanh BX, Oh WD, et al.
    J Colloid Interface Sci, 2021 Jun;591:161-172.
    PMID: 33601102 DOI: 10.1016/j.jcis.2021.01.108
    While Cobalt nanoparticles (Co NPs) are useful for catalytic Oxone activation, it is more advantageous to embed/immobilize Co NPs on nitrogen-doped carbon substrates to provide synergy for enhancing catalytic performance. Herein, this study proposes to fabricate such a composite by utilizing covalent organic frameworks (COF) as a precursor. Through complexation of COF with Co, a stable product of Co-complexed COF (Co-COF) can be synthesized. This Co-COF is further converted through pyrolysis to N-doped carbon in which cobaltic NPs are embedded. Owing to its well-defined structures of Co-COF, the pyrolysis process transforms COF into N-doped carbon with a bubble-like morphology. Such Co NP-embedded N-doped carbon nanobubbles (CoCNB) with pores, magnetism and Co, shall be a promising catalyst. Thus, CoCNB shows a much stronger catalytic activity than commercial Co3O4 NPs to activate Oxone to degrade toxic Amaranth dye (AMD). CoCNB-activated Oxone also achieves a significantly lower Ea value of AMD degradation (i.e., 27.9 kJ/mol) than reported Ea values in previous literatures. Besides, CoCNB is still effective for complete elimination of AMD in the presence of high-concentration NaCl and surfactants, and CoCNB is also reusable over five consecutive cycles.
  19. Lin JY, Lee J, Oh WD, Kwon E, Tsai YC, Lisak G, et al.
    J Colloid Interface Sci, 2021 Nov 15;602:95-104.
    PMID: 34118608 DOI: 10.1016/j.jcis.2021.05.098
    Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.
  20. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links