Displaying publications 41 - 48 of 48 in total

Abstract:
Sort:
  1. Zainah S, Wahab AH, Mariam M, Fauziah MK, Khairul AH, Roslina I, et al.
    J Virol Methods, 2009 Feb;155(2):157-60.
    PMID: 19022293 DOI: 10.1016/j.jviromet.2008.10.016
    The performance of a commercial immunochromatography test for rapid detection of dengue NS1 antigen present in serum or plasma of patients was evaluated against a commercial dengue NS1 antigen-capture ELISA. The rapid immunochromatography test gave an overall sensitivity of 90.4% with a specificity of 99.5%. The sensitivity was highest for serum samples from which virus was isolated (96.3%) and lowest for those from which virus was not isolated and RT-PCR was negative (76.4%). The sensitivity was significantly higher for serum samples from patients with acute primary dengue (92.3%) than those from patients with acute secondary dengue (79.1%). The positive predictive value and negative predictive value of this commercial immunochromatography test were 99.6% and 87.9% respectively.
  2. Yeong MY, Cheow PS, Abdullah S, Song AA, Lei-Rossmann J, Tan TK, et al.
    J Virol Methods, 2021 05;291:114099.
    PMID: 33592218 DOI: 10.1016/j.jviromet.2021.114099
    The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
  3. Lam CW, AbuBakar S, Chang LY
    J Virol Methods, 2017 05;243:1-9.
    PMID: 28082163 DOI: 10.1016/j.jviromet.2017.01.004
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×103 cfu/ml and 5.6×103 cfu/ml) and THP-1 cells (3.5×103 cfu/ml and 2.9×103 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells.
  4. Fu JYL, Chong YM, Sam IC, Chan YF
    J Virol Methods, 2022 Mar;301:114462.
    PMID: 35026305 DOI: 10.1016/j.jviromet.2022.114462
    Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.
  5. Lim PY, Cardosa MJ
    J Virol Methods, 2019 08;270:113-119.
    PMID: 31100287 DOI: 10.1016/j.jviromet.2019.05.005
    The goal of this paper was to develop a sandwich ELISA that can detect intact human enterovirus A71 (EV-A71) virus-like particles (VLPs) in vaccines. This assay specifically detected EV-A71 viruses from different sub-genogroups as well as EV-A71 VLPs, and treatment of VLPs with high heat and low pH reduced or completely abolished detection of the VLPs suggesting that the ELISA detected assembled particles. Using a purified VLP as a reference standard, a quantitative sandwich ELISA (Q-ELISA) was established which was used to monitor the yield and purity of the VLPs during manufacturing. Coupled with immunogenicity studies, the Q-ELISA was used to evaluate the performance of the VLPs and formalin-inactivated EV-A71 vaccine. This assay has the potential to play an important role in the development of an efficient process to produce and purify the VLPs and in examining the quality of EV-A71 vaccines.
  6. Lazouskaya NV, Palombo EA, Poh CL, Barton PA
    J Virol Methods, 2014 Mar;197:67-76.
    PMID: 24361875 DOI: 10.1016/j.jviromet.2013.12.005
    Enterovirus 71 (EV 71) is a causative agent of mild Hand Foot and Mouth Disease but is capable of causing severe complications in the CNS in young children. Reverse genetics technology is currently widely used to study the pathogenesis of the virus. The aim of this work was to determine and evaluate the factors which can contribute to infectivity of EV 71 RNA transcripts in vitro. Two strategies, overlapping RT-PCR and long distance RT-PCR, were employed to obtain the full-length genome cDNA clones of the virus. The length of the poly(A) tail and the presence of non-viral 3'-terminal sequences were studied in regard to their effects on infectivity of the in vitro RNA transcripts of EV 71 in cell culture. The data revealed that only cDNA clones obtained after long distance RT-PCR were infectious. No differences were observed in virus titres after transfection with in vitro RNA harbouring a poly(A) tail of 18 or 30 adenines in length, irrespective of the non-viral sequences at the 3'-terminus.
  7. Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, et al.
    J Virol Methods, 2010 Feb;163(2):459-64.
    PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014
    Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
  8. Rizvi A, Hussain N, Anjum AA, Ahmed N, Naeem A, Khan M, et al.
    J Virol Methods, 2022 Feb;300:114379.
    PMID: 34826516 DOI: 10.1016/j.jviromet.2021.114379
    Foot-and-mouth disease (FMD) is a highly infectious disease of cattle and other cloven-hoofed animals, causing huge economic losses annually worldwide. This disease is endemic in Pakistan where the serotypes of the foot-and-mouth disease virus (FMDV) are A, O and ASIA-1. At present, trivalent FMDV vaccines are being used to prevent FMD but the current production process is laborious and is unable to fulfill the needs of the meat and dairy industries. To meet the vaccine needs of Pakistan, the conventional method of using adherent cell lines to produce the vaccine could be replaced by suspension cell cultures which produce higher yields in less time and less volume. Therefore, the aim of this study was to investigate and optimize some of the factors that affect viable cell density and subsequent virus yield. The relationship between the yield of the 146S fraction and the TCID50 of the virus preparations obtained was also evaluated as a mean to control and check the quality of the vaccine product. The results provided optimized conditions for vaccine production using cell suspensions and showed that there was a linear relationship between TCID50 and 146S fraction yield. Either TCID50 or the 146S fraction yield, or both could be used as parameters for quality monitoring during vaccine production. Using TCID50 reduced the number of steps involved in virus production while measuring 146S fraction yield was useful for quality control. However, more studies are required to evaluate the relative effectiveness of vaccines produced by virus cultures using either TCID50 or 146S fraction as quality monitoring tools.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links