Displaying publications 41 - 60 of 95 in total

Abstract:
Sort:
  1. Muhamat Omar, Zalina Laili, Julia Abdul Karim, Zarina Masood, Nik Marzukee Nik Ibrahim, Mohd Abd Wahab Yusof
    MyJurnal
    A study to assess the concentration of radionuclides in spent resins of the PUSPATI TRIGA Mark II reactor coolant purification system has been carried out. Fresh spent resins collected and analysed in May 2010, after the changing of leaked heat exchanger in Sept. 2009 was found to contain 24Na, 122Sb, 51Cr, 124Sb, 58Co, 65Zn, 54Mn and 60Co. Old spent resins removed in 2001 and 2002 but analysed in 2010 indicated the presence of 60Co and 152Eu as radionuclides with half-lives of < 1 year might have already been decayed out. These results can be used to establish radionuclide inventory of the spent resins as part of radiation protection programme.
  2. Mohamad Hairie Rabir, Usang, Mark Dennis, Naim Syauqi Hamzah, Julia Abdul Karim, Mohd Amin Sharifuldin Salleh
    MyJurnal
    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial
    criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of
    basic nuclear research, manpower training, and production of radioisotopes. This
    paperdescribes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP);
    focusing on the application of the developed reactor 3D model for criticality calculation,
    analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D
    continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full
    model of the TRIGA reactor. The consistency and accuracy of the developed RTP MCNP model
    was established by comparing calculations to the experimental results and TRIGLAV
    code.MCNP and TRIGLAV criticality prediction of the critical core loading are in a very good
    agreement with the experimental results.Power peaking factor calculated with TRIGLAV are
    systematically higher than the MCNP but the trends are the same.Depletion calculation by both
    codes show differences especially at high burnup.The results are conservative and can be
    applied to show the reliability of MCNP code and the model both for design and verification of
    the reactor core, and future calculation of its neutronic parameters.
  3. Mohamad Hairie Rabir, Julia Abdul Karim, Mohd Amin Sharifuldin Salleh
    MyJurnal
    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of neutron flux and power distribution in PUSPATI TRIGA REACTOR (RTP) 14th core configuration. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core and fuels. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data as well as S (α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed.
  4. Noraishah Othmanl, Nor Pa' iza M. Hasani, Juhari Mohd Yusof, Roslan Yahya, Mohd Amirul Syafiq
    MyJurnal
    Flow measurement is a critical element for liquid resources monitoring for various applications in many industrial systems. The purposes of the study are to determine the flow rate of liquid system in flow rig using radiotracer techniques and to compare the result with that obtained by the conventional flow meters. The flow rig consists of 58.7m long and 20cm diameter pipeline that can accommodate about 0.296m3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. Radiotracer was injected as a sharp pulse into the inlet p.peline. The pulse was monitored at the inlet and various points along the outlet pipeline using collimated scintillation detector. The peak to peak and total count methods were applied for radiotracer techniques and showed the comparable results with conventional flow meter.
  5. Mohd Zulmadi Sani, Faiz Ahmad, Mustapha Akil, Zaiton Ahmad, Affrida Abu Hassan, Abdul Rahim Harun, et al.
    MyJurnal
    Kenaf (Hibiscus cannabinus L.) is one of the world’s most economically important fiber crops particularly in Asia-Pacific region. Mutation induction is a method to increase genetic divergence associated with selection, recombination, or a combination of these approaches in plant breeding. One of preliminary procedures for an execellent mutation breeding program is the radiosensitivity study to determine the optimal doses for irradiation. A total of 10 different doses of acute gamma rays (0, 100, 200, 400, 800, 1000, 1200, 1500, 1700 and 2000 Gy) from ceasium-137 source were applied to the seeds of V 36 kenaf variety. The irradiated seeds including the control were planted in trough for 30 days. The gamma irradiation effects on several parameters such as seedling survival percentages, plant height, root length, shoot fresh weight, root frest weight, shoot dry weight and root dry weight were analysed. From the radiosensitivity curve, the LD50 and LD25 values were estimated at 810 and 310 Gy, respectively. Two doses (200 Gy and 300 Gy) based on LD25 were chosen for evaluating the effects of gamma irradiation on morphological traits in M1 generation. Irradiated and non-irradiated seeds were planted in the field at Beseri, Perlis. About 10 phenotypic traits of irradiated plants were observed and evaluated against the controls. Cluster analysis on M1 progenies showed that the mutation could be classified into eight genotypic groups. The first two components from principal component analysis explained about 77.99% of variation. Number of seeds per pod, weight of seeds per plant and dry stem biomass play an important role in explaining the variation since they showed positive correlated values for the first component analysis. Morphological changes such as flower shape, flower colour, and leaf shape were also observed in M1 generation. The findings of this study are important in determining the effectiveness of these doses in generating mutations on kenaf plant and subsequent breeding program to develop new kenaf varieties with enhanced quality traits.
  6. Muhamat Omar, Zalina Laili, Mohd Suhaimi Hamzah
    MyJurnal
    Qualitative and quantitative analysis of samples require good judgment from the analysts. These two aspects in gamma spectrometric analysis of Proficiency Test and solid radioactive waste samples for the determination of radionuclides are discussed. It is vital to judge and decide what energy peaks belong to which radionuclides prior to the creation of customized radionuclide library for the analysis of specific samples. Corrections due to radionuclide decay and growth, and the half-life assigned to a particular radionuclide in the uranium and thorium series are also discussed. Discussion on judgment to confirm the presence of thorium in food samples based on gamma spectrometry and neutron activation analysis is also provided.
  7. Norhayati Abdullah, Kadni, Taiman, Mohd Taufik Dolah
    MyJurnal
    In this paper, we report the dosimetry methodology used in the IAEA/WHO Thermoluminescent Dosimeter (TLD) Postal Dose Quality Audit Service and the results of 22 Malaysian radiotherapy centres participated in the audit from 2011 to 2015. Each participating centre was provided with a few sets of TLD capsule (two unit of TLD capsules to be irradiated and a control TLD in one set) as requested by the centres. The participating centres were asked to irradiate each TLD capsule at 2 Gy absorbed a dose to water under reference conditions i.e the TLD capsule is positioned at 10 cm depths in water, at central axis with 10 cm x 10 cm field size at 100 cm Source-Surface Distance or 100 cm Source-Axis Distance. In this period, a total of 70 photon beams consist of 43 beams and 27 beams produced by 6 MV and 10 MV photon beams, respectively have been audited. The results demonstrated that all participating centres comply with the acceptance limits of ± 5% as recommended by the International Commission on Radiation Units and Measurements (ICRU) Report 24, except eight photon beams from six centres. However, these centres presented better compliance results after being followed up with a second round of TLD irradiation.

  8. Wan Nordiana W Abd Rahman, Raizulnasuha Ab Rashid, Mahfuzah Muhammad, Khairunisak Abdul Razak, Norhayati Dollah, Moshi Geso
    MyJurnal
    Gold nanoparticles (AuNPs) have been extensively investigated as dose enhancement agent to increase the lethal dose to the tumours while minimizing dose to the normal tissue. Their intriguing properties and characteristics such as small size and shape provide favorable option in increasing radiotherapy therapeutic efficiency. In this study, the effects of AuNPs size on the dose enhancement effects irradiated under megavoltage photon beams were investigated. The study was conducted in-vitro on HeLa cells using AuNPs of 5 nm and 15 nm sizes. The cells samples were incubated with AuNPs and irradiated with photon beam of energy 6 MV and 10 MV at 100 cm SSD and 10 cm x 10 cm field size. Clonogenic assay were performed to observe the dose enhancement effects on cell survival. Dose enhancement factor (DEF) were extrapolated and evaluated from the cell survival curves. The results show that both sizes of AuNPs produce dose enhancement with the larger size AuNPs of 15 nm produce more dose enhancement compare to 5 nm AuNPs for 6 MV photon beam. Dose enhancements were observed for 10 MV photon beams but DEF for both sizes AuNPs shows no differences. In conclusion, larger size AuNPs produce higher dose enhancement compare to small size of AuNPs which conclude that nanoparticles size is important factor that need to be taken into account for AuNPs to be applied in radiotherapy.
  9. Rosmazihana Mat Lazim, Raizulnasuha Ab Rashid, Wan Nordiana Rahman, Binh. T.T. Pham, Brian S. Hawkett, Moshi Geso
    MyJurnal
    Therapeutic application of metallic nanoparticles such as gold nanoparticles have been extensively investigated and intriguing finding have been reported. Superparamagnetic iron oxide nanoparticles (SPION) could also potentially have therapeutic properties that can be exploited to enhance radiotherapy outcome. In this study, investigations on the dose enhancement effects inflicted by SPIONs under irradiation with megavoltage photon beam radiotherapy were conducted. T24 human bladder cancer cell lines were pretreated with 1 mMol/L of SPION and irradiated with 6 MV and 10 MV photon beam at different doses.The non-treated cells irradiation was used as a control. Clonogenic assay was performed to determine the cell survival. Linear quadratic (LQ) model are used as fitting curve and does enhancement factors (DEF) were extrapolated from the curves. The cytotoxicity indicated cell growth normally after 72 hours and no long term cytotoxicity effects of SPIONs towards the cells were observed. The dose enhancement effects were observed for both 6 MV and 10 MV photon beam with DEF obtained 1.71 and 2.50, respectively. This reduction of cell colonies growth could be resulted from the interaction that induced free radical and reactive oxygen species (ROS) by megavoltage photon beams. The SPIONs were therefore act as multifunction nanoparticle both in diagnostic agent and radiotherapy as radiation dose enhancer, thus clearly qualified as future theranostic agents.
  10. Ros Anita Ahmad Ramli, Ahmad Zainuri Mohd Dzomir, Zainon Othman, Wan Saffiey Wan Abdullah, Muhamad Samudi Yasir
    MyJurnal
    The exposure of food to ionizing radiation is being progressively used in many countries to
    inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free
    consumer choice, irradiated food will be labeled. The availability of a reliable method to detect
    irradiated food is important to enforce legal controls on labeling requirements, ensure proper
    distribution and increase consumer confidence. This paper reports on the preliminary application
    of photostimulated luminescence technique (PSL) as a potential method to detect irradiated food
    and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this
    study will be beneficial and relevant for application of food irradiation towards improving food
    safety and security in Malaysia.
  11. Zalina Laili, Mohd Zaidi Ibrahim, Muhamat Omar
    MyJurnal
    A study has been carried out using a gamma-ray spectrometric system to determine the natural
    radioactivity level in bricks made from industrial waste and their associated radiation hazard.
    Brick-1 and brick-2 contained waste from coal power plant and granite industry, respectively. The
    leachability of radionuclides from these bricks was also investigated. The activity concentration
    values of 226Ra,
    228Ra,
    232Th, and 40K are 64.25, 63.15, 67.9 and 254.19 Bq/kg, respectively in brick-
    1, and 193, 164.48, 164.63 and 1348.75 Bq/kg, respectively in brick-2. The radiation hazard
    indexes such as radium equivalent activities (Raeq), representative level index (Iγr), external hazard
    index (Hex) and internal hazard index (Hin) were calculated and compared with the internationally
    approved values. Results indicate that brick-1 showed less radiological hazard than brick-2. This
    suggested that brick-1 could be used in building construction without exceeding the proposed
    criterion level.The leachability of 226Ra for bricks showed the activity concentration slightly
    exceeded 1 Bq/L which is the limit generally used for industrial wastewater.
  12. Shamsiah Abdul Rahman, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Zalina Laili, Azian Hashim, Shakirah Abd Shukor, et al.
    MyJurnal
    Samples of fine (PM2.5) and coarse (PM10-2.5) fraction of airborne particulate were collected on weekly basis during the period from May 2012 to July 2014 at Bangi, Selangor. The samples were collected using a Gent Stacked Filter Sampler in two fractions of < 2.5 µm and 2.5 - 10 µm sizes. This research paper aims at establishing the concentration level of PM2.5, PM10-2.5 and PM10 at Bangi area and investigates their possible sources and contribution to the ambient aerosol of the area. The samples were analyzed for their elemental composition and black carbon content by Particle Induced X-ray Emission (PIXE) and Smoke Stain Reflectometer, respectively. The average for PM2.5, PM10-2.5 and PM10 ranged from1.8 µg/m3 to 78.0 µg/m3, 9.6 µg/m3 to 76.8 µg/m3 and 12 µg/m3 to 134 µg/m3, respectively. Positive Matrix Factorization (PMF) technique was also applied to fine and coarse data set in order to identify the possible sources of particulate matter (PM) and their contribution to the ambient particulate matter concentrations in the area. The best solution was found to be five factors for both elemental compositions of fine and coarse PM, respectively. The PMF results show that motor vehicles and secondary sulphate contribute about 40.3% and 33.0% of the fine mass respectively followed by soil, sea salt and smoke/biomass burning with the average contribution of 10.5%, 10.3% and 6.4%, respectively. In case of coarse particles the PMF results show that a large fraction of about more than 50% of the coarse mass comes from motor vehicle. Soil dust including road dust and soil construction contribute about 32.5% of the coarse mass whilst the smoke/biomass burning factor contributes about 6.7% of the coarse mass.
  13. Mohamad Hairie Rabir, Julia Abdul Karim, Muhammad Rawi Mohamed Zin
    MyJurnal
    The Malaysian’s PUSPATI TRIGA Reactor (RTP) achieved its initial criticality on June 28, 1982. The reactor is designed to effectively implement various fields of basic nuclear research, manpower training, and production of radioisotopes. Several past activities on neutronics modelling development and validation of the RTP were carried out using Monte Carlo Code MCNP. In this work, the developed model was used to characterise in-core and beam-ports irradiation facilities of the reactor. The thermal and fast neutron flux distributions in these facilities were determined using MCNP mesh tally method. It was found that the flux as well as its spectral characteristics depended very much on the position of the irradiation facility in the reactor core or in the beam-ports. The maximum neutron flux was found to be in the Central Thimble facility with 1.98E13 nv of thermal neutron. The thermal-to-total flux ratio varies significantly from 0.41 for the in-core facility, 0.58 in the reflector and up to 0.88 in the beam-ports.
  14. Muhammad Rawi Mohamed Zin, Mahendrasingam, Arumugam, Konkel, Chris, Narayanan, Theyencheri
    MyJurnal
    Changes in molecular structure configuration during strain induced crystallisation of an amorphous Poly(Lactic Acid) (PLA 4032D) polymer was monitored in-situ by simultaneously recording the wide angle x-ray scattering (WAXS) and small angle x-ray scattering (SAXS) patterns together with polymer deformation images and force data. The amorphous chain orientation from the beginning of deformation until the onset of crystallisation was studied from the WAXS patterns. The true mechanical behaviour described by the true stress-true strain curve related to an amorphous chain orientation exhibited a linear behaviour. Approaching critical amorphous orientation, the true stress-true strain curve deviated from linear into non-linear behaviour. After the onset of crystallization, when the deformed polymer became a semicrystalline state, the true mechanical behaviour exhibited true strain hardening which greatly affected by the formation of the morphology. The gradual true strain hardening was associated with the formation of micro-fibrillar structure containing thin crystallite morphology whilst sharp increased in true strain hardening was associated with the formation of stacked lamellar morphology in the form of macro-lattice structure. The study was accomplished by the application of high brilliance synchrotron radiation at beamline ID2 of ESRF, Grenoble in France and the usage of the high contrast resolution of WAXS and SAXS charge-couple device (CCD) camera as well as 40 milliseconds temporal resolution of data acquisition system.
  15. Md Suhaimi Elias, Mohd Suhaimi Hamzah, Mohd Suhaimi Hamzah, Siong, Wee Boon, Nazaratul Ashifa Abdullah Salim
    MyJurnal
    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values.
  16. Ismail Mustapha, Samihah Mustaffh, Md Fakarudin Ab Rahman, Roslan Yahya, Lahasen @ Norman Shah Dahin, Nor Pa’iza Mohd Hasan, et al.
    MyJurnal
    Non-destructive and real time method becomes a well-liked method to researchers in the oil palm
    industry since 2000. This method has the ability to detect oil content in order to increase the
    production of oil palm for better profit. Hence, this research investigates the potential of neutron
    source to estimate oil content in palm oil fruit since oil palm contains hydrogen with chemical
    formula C55H96O6. For this paper, oil palm loose fruit was being used and divided into three
    groups. These three groups are ripe, under-ripe and bruised fruit. A total of 21 loose fruit for each
    group were collected from a private plantation in Malaysia. Each sample was scanned using
    neutron backscattered technique. The higher neutron count, the more hydrogen content, and the
    more oil content in palm oil fruit. The best correlation result came from the ripe fruits with r2=0.98.
    This research proves that neutron backscattered technique can be used as a non-destructive and
    real time grading system for palm oil.
  17. Mohd Fauzi Haris, Saaidi Ismail, Mohamad Safuan Sulaiman, Mohd Dzul Aiman Aslan, Siti Nurbahyah Hamdan, Maslina Mohd Ibrahim, et al.
    MyJurnal
    The remote measurements of radiation level at an identified location, are not only important for
    collecting data or monitoring radiation level per se, but also crucial for workers who deal with
    radiation sources. A device for checking an on-site radiation level has been developed quite a
    long time ago under the name of Geiger Muller and widely known as a Geiger counter. The
    reading of the output can be seen on the device on-site and on real-time basis. Nowadays, with
    the fast evolution of computer and networking technology, those reading not only can be read
    real-time but also from a remote location that makes workers able to enter the risky area more
    safely. The collected data reading also can be analyzed for predicting the future trending
    pattern. The data is transferred from the monitoring devices to a server through a network. This
    paper discusses about several critical issues on the design, implementation and deployment that
    relates to the devices, interface programs, hardware and software that allow all parameters such
    as radiation levels reading and the timestamp of the data-logging can be collected and stored in
    a central storage for further processes. The compatibility issue with regards to technology
    change from the previous system will also be discussed. The system has many advantages
    compared to previous system and conventional method of doing the area monitoring in term of
    sustainability and availability.
  18. Nurrul Assyikeen Md. Jaffary, Wo, Yii Mei, Abdul Kadir Ishak, Noor Fadzilah Yusof, Kamarozaman Ishak, Maziah Mahmud, et al.
    MyJurnal
    On March 11, 2011, a serious accident occurred in Daiichi nuclear reactor plant, Fukushima,
    Japan which caused radioactive materials been released into the atmosphere in the form of
    aerosols and dust particles. Sea water around the plant was also found contaminated with high
    radioactivity readings. These radioactive materials could be transported by the winds and ocean
    current across international borders and cannot be controlled by human. Thus, a continuous
    monitoring activity of radionuclide content in the air and sea water needs to be conducted by the
    authorities. In addition to radioactivity monitoring, Malaysia should also control the entry of
    contaminated food in order to prevent radionuclide ingestion by human. The radionuclide 131I,
    134Cs and 137Cs were used as a measure of pollution levels and counted with gamma spectrometry
    using standard analysis method suggested by AOAC International. In this paper, details description
    of the role of Radiochemical and Environment Group, Nuclear Malaysia who’s responsible in
    analyzing the radioactivity in the food samples due to Fukushima Daiichi, Japan accident was
    included. The radioactivity limit adopted and analysis results from this monitoring were discussed
  19. Jaafar Abdullah, Roslan Yahya, Lahasen@Norman Shah Dahing, Hearie Hassan, Engku Mohd Fahmi Engku Chik, Mohamad Rabaie Shari, et al.
    MyJurnal
    “Batu Bersurat Terengganu (inscribed stone)” is the oldest artifact with Jawi writing on it. The
    artifact proves that the Kingdom of Terengganu exist earlier than 1326 or 1386. To date, a lot of
    studies on the content of the inscription have been carried out by historians and archaeologists, but
    no scientific investigation about the material composition and its provenance has been performed.
    This paper focuses on the study of the origin of the Batu Bersurat Terengganu using NeutronInduced
    Prompt Gamma-Ray Techniques (NIPGAT). Portable NIPGAT system has been designed
    and developed based on volumetric measurement methods and it will be considered as a nondestructive
    testing. The system uses low activity of californium-252 (Cf-252) neutron radioactive
    sources, gamma ray spectroscopy and special computer software to carry out the investigation. The
    study found that the Batu Bersurat Terengganu is made of dolerite based on the elemental
    composition of the stone. Although most of the scientific data for the study of the origin are already
    obtained, but further research is still ongoing to complete the scope of this study.
  20. Zal U’yun Wan Mahmood, Zaharudin Ahmad, Che Abd Rahim Mohamed, Abdul Kadir Ishak, Norfaizal Mohammed
    MyJurnal
    The distribution, enrichment and pollution status of metals in sediment cores from the Sabah-Sarawak coastal waters were studied. Seven sediment cores were taken in July 2004 using a gravity box corer. The metals of Cu, Zn and Pb were analyzed by ICP-MS to assess the pollution status of the sediments. The sediment fine fraction and organic carbon content was also analyzed. Enrichment Factor (EF), Geoaccumulation Index (Igeo) and Pollution Load Index (PLI) was calculated as criteria of possible contamination. The results showed that collected sediments were composed with clay, silt and sand as 12 – 74%, 27 – 72% and 0 – 20%, respectively. Meanwhile, organic carbon contents were relatively low and constant over time, based on sediment depth profiles, and it did not exceed 5% at any sampling station. The average metal concentrations in sediment cores at all sampling station were distributed in the ranges of 1.66 ± 1.36 – 6.61 ± 0.12 μgg-1 for Cu, 26.55 ± 1.04 – 57.94 ± 1.58 μgg-1 for Zn and 3.99 ± 0.10 – 14.48 ± 0.32μgg-1 for Pb. According to calculations of EF, Igeo and PLI, it can be concluded that concentrations of Cu, Zn and Pb were not significantly affected by pollution from anthropogenic sources at the seven sampling locations. Thus, the metal content of Cu, Zn and Pb in sediment should not cause pollution problem to the marine environment of Sabah-Sarawak coastal waters and further response measures are not needed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links