Displaying publications 41 - 42 of 42 in total

Abstract:
Sort:
  1. Yazit NAA, Juliana N, Das S, Teng NIMF, Fahmy NM, Azmani S, et al.
    Mini Rev Med Chem, 2020;20(17):1781-1790.
    PMID: 32564754 DOI: 10.2174/1389557520666200621182717
    Postoperative Cognitive Dysfunction (POCD) refers to the condition of neurocognitive decline following surgery in a cognitive and sensory manner. There are several risk factors, which may be life-threatening for this condition. Neuropsychological assessment of this condition is very important. In the present review, we discuss the association of apolipoprotein epsilon 4 (APOE ε4) and few miRNAs with POCD, and highlight the clinical importance for prognosis, diagnosis and treatment of POCD. Microarray is a genome analysis that can be used to determine DNA abnormalities. This current technique is rapid, efficient and high-throughout. Microarray techniques are widely used to diagnose diseases, particularly in genetic disorder, chromosomal abnormalities, mutations, infectious diseases and disease-relevant biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are widely found distributed in eukaryotes. Few miRNAs influence the nervous system development, and nerve damage repair. Microarray approach can be utilized to understand the miRNAs involved and their pathways in POCD development, unleashing their potential to be considered as a diagnostic marker for POCD. This paper summarizes and identifies the studies that use microarray based approaches for POCD analysis. Since the application of microarray in POCD is expanding, there is a need to review the current knowledge of this approach.
  2. Zarkasi KA, Jen-Kit T, Jubri Z
    Mini Rev Med Chem, 2019;19(17):1407-1426.
    PMID: 30706809 DOI: 10.2174/1389557519666190130164334
    Myocardial infarction is a major cause of deaths globally. Modulation of several molecular mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently, there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease. This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence the expression of a number of genes and their protein products. Essentially, it inhibits the molecular progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize the molecular understanding of the cardiomodulation in myocardial infarction as well as the mechanism of vitamin E protection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links