Displaying publications 41 - 43 of 43 in total

Abstract:
Sort:
  1. Gray HWI, Nishida S, Welch AJ, Moura AE, Tanabe S, Kiani MS, et al.
    Mol Phylogenet Evol, 2018 05;122:1-14.
    PMID: 29294405 DOI: 10.1016/j.ympev.2017.12.027
    Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range.
  2. Ghazali SZ, Lavoué S, Sukmono T, Habib A, Tan MP, Nor SAM
    Mol Phylogenet Evol, 2023 Sep;186:107832.
    PMID: 37263456 DOI: 10.1016/j.ympev.2023.107832
    We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
  3. Schnittler M, Inoue M, Shchepin ON, Fuchs J, Chang H, Lamkowski P, et al.
    Mol Phylogenet Evol, 2024 Mar 30;196:108067.
    PMID: 38561082 DOI: 10.1016/j.ympev.2024.108067
    In the species groups related to Diphasiastrum multispicatum and D. veitchii, hybridization was investigated in samples from northern and southern Vietnam and the island of Taiwan, including available herbarium specimens from southeast Asia. The accessions were analyzed using flow cytometry (living material only), Sanger sequencing and multiplexed inter-simple sequence repeat genotyping by sequencing. We detected two cases of ancient hybridization involving different combinations of parental species; both led via subsequent duplication to tetraploid taxa. A cross D. multispicatum × D. veitchii from Malaysia represents D. wightianum, a tetraploid taxon according to reported DNA content measurements of dried material (genome formulas MM, VV and MMVV, respectively). The second case involves D. veitchii and an unknown diploid parent (genome formula XX). Three hybridogenous taxa (genome formulas VVX, VVXX, VVVX) were discernable by a combination of flow cytometry and molecular data. Taxon I (VVX, three clones found on Taiwan island) is apparently triploid. Taxon II represents another genetically diverse and sexual tetraploid species (VVXX) and can be assigned to D. yueshanense, described from Taiwan island but occurring as well in mainland China and Vietnam. Taxon III is as well most likely tetraploid (VVVX) and represented by at least one, more likely two, clones from Taiwan island. Taxa I and III are presumably asexual and new to science. Two independently inherited nuclear markers recombine only within, not between these hybrids, pointing towards reproductive isolation. We present an evolutionary scheme which explains the origin of the hybrids and the evolution of new and fully sexual species by hybridization and subsequent allopolyploidization in flat-branched clubmosses.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links