Displaying publications 41 - 60 of 163 in total

Abstract:
Sort:
  1. Sahimin N, Lim YA, Ariffin F, Behnke JM, Lewis JW, Mohd Zain SN
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005110.
    PMID: 27806046 DOI: 10.1371/journal.pntd.0005110
    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.
  2. Sady H, Al-Mekhlafi HM, Mahdy MA, Lim YA, Mahmud R, Surin J
    PLoS Negl Trop Dis, 2013;7(8):e2377.
    PMID: 23991235 DOI: 10.1371/journal.pntd.0002377
    BACKGROUND: Schistosomiasis, one of the most prevalent neglected tropical diseases, is a life-threatening public health problem in Yemen especially in rural communities. This cross-sectional study aims to determine the prevalence and associated risk factors of schistosomiasis among children in rural Yemen.

    METHODS/FINDINGS: Urine and faecal samples were collected from 400 children. Urine samples were examined using filtration technique for the presence of Schistosoma haematobium eggs while faecal samples were examined using formalin-ether concentration and Kato Katz techniques for the presence of S. mansoni. Demographic, socioeconomic and environmental information were collected via a validated questionnaire. Overall, 31.8% of the participants were found to be positive for schistosomiasis; 23.8% were infected with S. haematobium and 9.3% were infected with S. mansoni. Moreover, 39.5% of the participants were anaemic whereas 9.5% had hepatosplenomegaly. The prevalence of schistosomiasis was significantly higher among children aged >10 years compared to those aged ≤ 10 years (P<0.05). Multivariate analysis confirmed that presence of other infected family member (P<0.001), low household monthly income (P = 0.003), using unsafe sources for drinking water (P = 0.003), living nearby stream/spring (P = 0.006) and living nearby pool/pond (P = 0.002) were the key factors significantly associated with schistosomiasis among these children.

    CONCLUSIONS/SIGNIFICANCE: This study reveals that schistosomiasis is still highly prevalent in Yemen. These findings support an urgent need to start an integrated, targeted and effective schistosomiasis control programme with a mission to move towards the elimination phase. Besides periodic drug distribution, health education and community mobilisation, provision of clean and safe drinking water, introduction of proper sanitation are imperative among these communities in order to curtail the transmission and morbidity caused by schistosomiasis. Screening and treating other infected family members should also be adopted by the public health authorities in combating this infection in these communities.

  3. Runge-Ranzinger S, Kroeger A, Olliaro P, McCall PJ, Sánchez Tejeda G, Lloyd LS, et al.
    PLoS Negl Trop Dis, 2016 Sep;10(9):e0004916.
    PMID: 27653786 DOI: 10.1371/journal.pntd.0004916
    BACKGROUND: Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks.

    METHODOLOGY/PRINCIPAL FINDINGS: Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed.

    CONCLUSIONS/SIGNIFICANCE: Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.

  4. Rosenberger KD, Alexander N, Martinez E, Lum LCS, Dempfle CE, Junghanss T, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008076.
    PMID: 32130212 DOI: 10.1371/journal.pntd.0008076
    Severe dengue was perceived as one clinical disease entity until the WHO 2009 classification stratified it into severe vascular leakage, severe bleeding, and severe organ dysfunction. The objectives of this study were to investigate the potential use of severe dengue categories as endpoints for intervention research. 271 patients with severe dengue among 1734 confirmed dengue patients were followed prospectively in this hospital-based observational study in Latin America and Asia. We compared the distribution of severe dengue categories according to gender and age (below/above 15y), and determined the relative frequency and the overlap of severe dengue categories in the same patients. In a next step, we extended the analysis to candidate moderate severity categories, based on recently suggested definitions which were adapted for our purposes. Severe vascular leakage occurred in 244 (90%), severe bleeding in 39 (14%), and severe organ dysfunction in 28 (10%) of 271 severe dengue patients. A higher frequency of severe leakage was seen in children or adolescents (<15y) compared to adults. More than 80% of the severe leakage cases, and 30-50% of the cases with severe bleeding or severe organ dysfunction, were defined as severe on the basis of that feature alone. In 136 out of 213 patients with severe leakage alone, neither moderate bleeding manifestation nor hepatic involvement was recorded. On the other hand, moderate leakage manifestations were detected in 4 out of 12 cases that were classified as severe based on bleeding alone. A major proportion of severe dengue patients exhibited clinical manifestations of severe vascular leakage only, which may constitute a useful endpoint for intervention research or pathophysiology studies. Severe bleeding and severe organ manifestation were recorded less frequently and exhibited a higher degree of overlap with severe leakage. Severe bleeding without leakage may be associated with individual predisposition or the presence of comorbidities. More detailed assessments are needed to explore this hypothesis. Candidate moderate disease endpoints were investigated and need to be further validated.
  5. Rayanakorn A, Ademi Z, Liew D, Lee LH
    PLoS Negl Trop Dis, 2021 01;15(1):e0008985.
    PMID: 33481785 DOI: 10.1371/journal.pntd.0008985
    BACKGROUND: Streptoccocus suis (S.suis) infection is a neglected zoonosis disease in humans mainly affects men of working age. We estimated the health and economic burden of S.suis infection in Thailand in terms of years of life lost, quality-adjusted life years (QALYs) lost, and productivity-adjusted life years (PALYs) lost which is a novel measure that adjusts years of life lived for productivity loss attributable to disease.

    METHODS: A decision-analytic Markov model was developed to simulate the impact of S. suis infection and its major complications: death, meningitis and infective endocarditis among Thai people in 2019 with starting age of 51 years. Transition probabilities, and inputs pertaining to costs, utilities and productivity impairment associated with long-term complications were derived from published sources. A lifetime time horizon with follow-up until death or age 100 years was adopted. The simulation was repeated assuming that the cohort had not been infected with S.suis. The differences between the two set of model outputs in years of life, QALYs, and PALYs lived reflected the impact of S.suis infection. An annual discount rate of 3% was applied to both costs and outcomes. One-way sensitivity analyses and Monte Carlo simulation modeling technique using 10,000 iterations were performed to assess the impact of uncertainty in the model.

    KEY RESULTS: This cohort incurred 769 (95% uncertainty interval [UI]: 695 to 841) years of life lost (14% of predicted years of life lived if infection had not occurred), 826 (95% UI: 588 to 1,098) QALYs lost (21%) and 793 (95%UI: 717 to 867) PALYs (15%) lost. These equated to an average of 2.46 years of life, 2.64 QALYs and 2.54 PALYs lost per person. The loss in PALYs was associated with a loss of 346 (95% UI: 240 to 461) million Thai baht (US$11.3 million) in GDP, which equated to 1.1 million Thai baht (US$ 36,033) lost per person.

    CONCLUSIONS: S.suis infection imposes a significant economic burden both in terms of health and productivity. Further research to investigate the effectiveness of public health awareness programs and disease control interventions should be mandated to provide a clearer picture for decision making in public health strategies and resource allocations.

  6. Ratanabanangkoon K, Tan KY, Eursakun S, Tan CH, Simsiriwong P, Pamornsakda T, et al.
    PLoS Negl Trop Dis, 2016 Apr;10(4):e0004565.
    PMID: 27058956 DOI: 10.1371/journal.pntd.0004565
    Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (polyspecific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a 'pan-specific' AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide paraspecificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund's adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen, satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide paraspecificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
  7. Rasli R, Cheong YL, Che Ibrahim MK, Farahininajua Fikri SF, Norzali RN, Nazarudin NA, et al.
    PLoS Negl Trop Dis, 2021 Mar;15(3):e0009205.
    PMID: 33755661 DOI: 10.1371/journal.pntd.0009205
    BACKGROUND: In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance.

    METHOD AND RESULTS: The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species.

    CONCLUSION: The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.

  8. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

  9. Rajamanikam A, Isa MNM, Samudi C, Devaraj S, Govind SK
    PLoS Negl Trop Dis, 2023 Mar;17(3):e0011170.
    PMID: 36989208 DOI: 10.1371/journal.pntd.0011170
    Whilst the influence of intestinal microbiota has been shown in many diseases such as irritable bowel syndrome, colorectal cancer, and aging, investigations are still scarce on its role in altering the nature of other infective organisms. Here we studied the association and interaction of Blastocystis sp. and human intestinal microbiota. In this study, we investigated the gut microbiome of Blastocystis sp.-free and Blastocystis sp. ST3-infected individuals who are symptomatic and asymptomatic. We tested if the expression of phenotype and pathogenic characteristics of Blastocystis sp. ST3 was influenced by the alteration of its accompanying microbiota. Blastocystis sp. ST3 infection alters bacterial composition. Its presence in asymptomatic individuals showed a significant effect on microbial richness compared to symptomatic ones. Inferred metagenomic findings suggest that colonization of Blastocystis sp. ST3 could contribute to the alteration of microbial functions. For the first time, we demonstrate the influence of bacteria on Blastocystis sp. pathogenicity. When Blastocystis sp. isolated from a symptomatic individual was co-cultured with bacterial suspension of Blastocystis sp. from an asymptomatic individual, the parasite demonstrated increased growth and reduced potential pathogenic expressions. This study also reveals that Blastocystis sp. infection could influence microbial functions without much effect on the microbiota diversity itself. Our results also demonstrate evidence on the influential role of gut microbiota in altering the characteristics of the parasite, which becomes the basis for the contradictory findings on the parasite's pathogenic role seen across different studies. Our study provides evidence that asymptomatic Blastocystis sp. in a human gut can be triggered to show pathogenic characteristics when influenced by the intestinal microbiota.
  10. Qamruddin RM, Safferi RS, Mohamed Ismail Z, Salleh MS, Abd Hamid MNH, Frederic Ng VER, et al.
    PLoS Negl Trop Dis, 2023 Aug;17(8):e0011569.
    PMID: 37585486 DOI: 10.1371/journal.pntd.0011569
    Not all pit viper species are present in every state of Malaysia and their distribution varies according to altitude. There is limited information on pit viper bite incidence and its geographical distribution. This was a cross-sectional study of confirmed pit viper bite cases referred to Remote Envenomation Consultancy Services (RECS) from January 2017 to December 2020. Data was collected following the approval of institutional research ethics committee. Universal sampling methods were used. Confirmed pit viper bite cases in each state, geographical location and the antivenom used were reported. A total of 523 confirmed pit viper bite injuries occurred over the 4-year study period. The majority were Malaysians, male and young adults. Most were non-occupational related (83.9%) and involved the upper limbs (46.8%). The commonest pit viper species involved was Trimeresurus purpureomaculatus (23.7%). Green pit viper antivenom (GPAV) was the most frequent antivenom used (n = 51) with the majority of patients requiring only one dose (3 vials). This study provides a better appreciation of indigenous pit viper species distribution for each state and reflects the requirement of appropriate antivenom to be stocked in each state or district hospital.
  11. Pruksaphon K, Tan KY, Tan CH, Simsiriwong P, Gutiérrez JM, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2020 Aug;14(8):e0008581.
    PMID: 32857757 DOI: 10.1371/journal.pntd.0008581
    The aim of this study was to develop an in vitro assay for use in place of in vivo assays of snake venom lethality and antivenom neutralizing potency. A novel in vitro assay has been developed based on the binding of post-synaptically acting α-neurotoxins to nicotinic acetylcholine receptor (nAChR), and the ability of antivenoms to prevent this binding. The assay gave high correlation in previous studies with the in vivo murine lethality tests (Median Lethal Dose, LD50), and the neutralization of lethality assays (Median Effective Dose, ED50) by antisera against Naja kaouthia, Naja naja and Bungarus candidus venoms. Here we show that, for the neurotoxic venoms of 20 elapid snake species from eight genera and four continents, the in vitro median inhibitory concentrations (IC50s) for α-neurotoxin binding to purified nAChR correlated well with the in vivo LD50s of the venoms (R2 = 0.8526, p < 0.001). Furthermore, using this assay, the in vitro ED50s of a horse pan-specific antiserum against these venoms correlated significantly with the corresponding in vivo murine ED50s, with R2 = 0.6896 (p < 0.01). In the case of four elapid venoms devoid or having a very low concentration of α-neurotoxins, no inhibition of nAChR binding was observed. Within the philosophy of 3Rs (Replacement, Reduction and Refinement) in animal testing, the in vitro α-neurotoxin-nAChR binding assay can effectively substitute the mouse lethality test for toxicity and antivenom potency evaluation for neurotoxic venoms in which α-neurotoxins predominate. This will greatly reduce the number of mice used in toxicological research and antivenom production laboratories. The simpler, faster, cheaper and less variable in vitro assay should also expedite the development of pan-specific antivenoms against various medically important snakes in many parts of the world.
  12. Philip N, Bahtiar Affendy N, Ramli SNA, Arif M, Raja P, Nagandran E, et al.
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0008197.
    PMID: 32203511 DOI: 10.1371/journal.pntd.0008197
    BACKGROUND: Leptospirosis, commonly known as rat-urine disease, is a global but endemic zoonotic disease in the tropics. Despite the historical report of leptospirosis in Malaysia, the information on human-infecting species is limited. Determining the circulating species is important to understand its epidemiology, thereby to strategize appropriate control measures through public health interventions, diagnostics, therapeutics and vaccine development.

    METHODOLOGY/PRINCIPLE FINDINGS: We investigated the human-infecting Leptospira species in blood and serum samples collected from clinically suspected leptospirosis patients admitted to three tertiary care hospitals in Malaysia. From a total of 165 patients, 92 (56%) were confirmed cases of leptospirosis through Microscopic Agglutination Test (MAT) (n = 43; 47%), Polymerase Chain Reaction (PCR) (n = 63; 68%) or both MAT and PCR (n = 14; 15%). The infecting Leptospira spp., determined by partial 16S rDNA (rrs) gene sequencing revealed two pathogenic species namely Leptospira interrogans (n = 44, 70%) and Leptospira kirschneri (n = 17, 27%) and one intermediate species Leptospira wolffii (n = 2, 3%). Multilocus sequence typing (MLST) identified an isolate of L. interrogans as a novel sequence type (ST 265), suggesting that this human-infecting strain has a unique genetic profile different from similar species isolated from rodents so far.

    CONCLUSIONS/SIGNIFICANCE: Leptospira interrogans and Leptospira kirschneri were identified as the dominant Leptospira species causing human leptospirosis in Central Malaysia. The existence of novel clinically important ST 265 (infecting human), that is different from rodent L. interrogans strains cautions reservoir(s) of these Leptospira lineages are yet to be identified.

  13. Perumal Samy R, Stiles BG, Sethi G, Lim LHK
    PLoS Negl Trop Dis, 2017 May;11(5):e0004738.
    PMID: 28493905 DOI: 10.1371/journal.pntd.0004738
    This review briefly summarizes the geographical distribution and clinical impact of melioidosis, especially in the tropics. Burkholderia pseudomallei (a gram-negative bacterium) is the major causative agent for melioidosis, which is prevalent in Singapore, Malaysia, Thailand, Vietnam, and Northern Australia. Melioidosis patients are increasingly being recognized in other parts of the world. The bacteria are intrinsically resistant to many antimicrobial agents, but prolonged treatment, especially with combinations of antibiotics, may be effective. Despite therapy, the overall case fatality rate of septicemia in melioidosis remains significantly high. Intracellular survival of the bacteria within macrophages may progress to chronic infections, and about 10% of patients suffer relapses. In the coming decades, melioidosis will increasingly afflict travelers throughout many global regions. Clinicians managing travelers returning from the subtropics or tropics with severe pneumonia or septicemia should consider acute melioidosis as a differential diagnosis. Patients with open skin wounds, diabetes, or chronic renal disease are at higher risk for melioidosis and should avoid direct contact with soil and standing water in endemic regions. Furthermore, there are fears that B. pseudomallei may be used as a biological weapon. Technological advancements in molecular diagnostics and antibiotic therapy are improving the disease outcomes in endemic areas throughout Asia. Research and development efforts on vaccine candidates against melioidosis are ongoing.
  14. Patikorn C, Ismail AK, Zainal Abidin SA, Othman I, Chaiyakunapruk N, Taychakhoonavudh S
    PLoS Negl Trop Dis, 2022 Nov;16(11):e0010915.
    PMID: 36383562 DOI: 10.1371/journal.pntd.0010915
    BACKGROUND: Despite domestic production of antivenoms in the Association of Southeast Asian Nations (ASEAN) countries, not all victims with snakebite envenomings indicated for antivenom received the appropriate or adequate effective dose of antivenom due to insufficient supply and inadequate access to antivenoms. We aimed to conduct a cost-effectiveness analysis to project the potential economic and clinical impact of improving access to antivenoms when all snakebite envenomings in ASEAN countries were hypothetically treated with geographically appropriate antivenoms.

    METHODOLOGY: Using a decision analytic model with input parameters from published literature, local data, and expert opinion, we projected the impact of "full access" (100%) to antivenom, compared to "current access" in five most impacted ASEAN countries, including Indonesia (10%), Philippines (26%), Vietnam (37%), Lao PDR (4%), and Myanmar (64%), from a societal perspective with a lifetime time horizon. Sensitivity analyses were performed.

    PRINCIPAL FINDINGS: In base-case analyses, full access compared to current access to snake antivenom in the five countries resulted in a total of 9,362 deaths averted (-59%), 230,075 disability-adjusted life years (DALYs) averted (-59%), and cost savings of 1.3 billion USD (-53%). Incremental cost-effectiveness ratios (ICERs) of improving access to antivenom found higher outcomes but lower costs in all countries. Probabilistic sensitivity analyses of 1,000 iterations found that 98.1-100% of ICERs were cost-saving.

    CONCLUSION/SIGNIFICANCE: Improving access to snake antivenom will result in cost-saving for ASEAN countries. Our findings emphasized the importance of further strengthening regional cooperation, investment, and funding to improve the situation of snakebite victims in ASEAN countries.

  15. Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, et al.
    PLoS Negl Trop Dis, 2022 Jun;16(6):e0010492.
    PMID: 35737709 DOI: 10.1371/journal.pntd.0010492
    Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
  16. Olliaro P, Fouque F, Kroeger A, Bowman L, Velayudhan R, Santelli AC, et al.
    PLoS Negl Trop Dis, 2018 02;12(2):e0005967.
    PMID: 29389959 DOI: 10.1371/journal.pntd.0005967
    BACKGROUND: Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases.

    METHOD: A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research.

    RESULTS: The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period.

    CONCLUSIONS: The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.

  17. Nwameme A, Dako-Gyeke P, Asampong E, Allotey P, Reidpath DD, Certain E, et al.
    PLoS Negl Trop Dis, 2023 Mar;17(3):e0011139.
    PMID: 36961830 DOI: 10.1371/journal.pntd.0011139
    The Special Programme for Research and Training in Tropical Diseases developed a massive open online course (MOOC) on implementation research with a focus on infectious diseases of poverty (IDPs) to reinforce the explanation of implementation research concepts through real case studies. The target MOOC participant group included public health officers, researchers and students. By reshaping institutions and building resilience in communities and systems, implementation research will allow progress towards universal health coverage and sustainable development goals. This study evaluates learners' knowledge in implementation research after completing the MOOC using anonymous exit survey responses. Of the almost 4000 enrolled in the two sessions of the MOOC in 2018, about 30% completed all five modules and the assessments, and were awarded certificates. The majority of the participants were early to mid-career professionals, under the age of 40, and from low- and middle-income countries. They were slightly more likely to be men (56%) with a Bachelor or a Master's degree. Participants were public health researchers (45%), public health officers (11%) or students (11%). On completion of the course, an exit survey revealed that 80.9% of respondents indicated significant improvement to strong and very strong implementation research knowledge. This evaluation clearly shows the usefulness of the MOOC on implementation research for reaching out to field researchers and public health practitioners who are facing problems in the implementation of control programmes in low- and middle-income countries.
  18. NikNadia N, Sam IC, Rampal S, WanNorAmalina W, NurAtifah G, Verasahib K, et al.
    PLoS Negl Trop Dis, 2016 Mar;10(3):e0004562.
    PMID: 27010319 DOI: 10.1371/journal.pntd.0004562
    Enterovirus A71 (EV-A71) is an important emerging pathogen causing large epidemics of hand, foot and mouth disease (HFMD) in children. In Malaysia, since the first EV-A71 epidemic in 1997, recurrent cyclical epidemics have occurred every 2-3 years for reasons that remain unclear. We hypothesize that this cyclical pattern is due to changes in population immunity in children (measured as seroprevalence). Neutralizing antibody titers against EV-A71 were measured in 2,141 residual serum samples collected from children ≤12 years old between 1995 and 2012 to determine the seroprevalence of EV-A71. Reported national HFMD incidence was highest in children <2 years, and decreased with age; in support of this, EV-A71 seroprevalence was significantly associated with age, indicating greater susceptibility in younger children. EV-A71 epidemics are also characterized by peaks of increased genetic diversity, often with genotype changes. Cross-sectional time series analysis was used to model the association between EV-A71 epidemic periods and EV-A71 seroprevalence adjusting for age and climatic variables (temperature, rainfall, rain days and ultraviolet radiance). A 10% increase in absolute monthly EV-A71 seroprevalence was associated with a 45% higher odds of an epidemic (adjusted odds ratio, aOR1.45; 95% CI 1.24-1.69; P<0.001). Every 10% decrease in seroprevalence between preceding and current months was associated with a 16% higher odds of an epidemic (aOR = 1.16; CI 1.01-1.34 P<0.034). In summary, the 2-3 year cyclical pattern of EV-A71 epidemics in Malaysia is mainly due to the fall of population immunity accompanying the accumulation of susceptible children between epidemics. This study will impact the future planning, timing and target populations for vaccine programs.
  19. Ngui R, Ishak S, Chuen CS, Mahmud R, Lim YA
    PLoS Negl Trop Dis, 2011;5(3):e974.
    PMID: 21390157 DOI: 10.1371/journal.pntd.0000974
    Intestinal parasitic infections (IPIs) have a worldwide distribution and have been identified as one of the most significant causes of illnesses and diseases among the disadvantaged population. In Malaysia, IPIs still persist in some rural areas, and this study was conducted to determine the current epidemiological status and to identify risk factors associated with IPIs among communities residing in rural and remote areas of West Malaysia.
  20. Ngui R, Lim YA, Traub R, Mahmud R, Mistam MS
    PLoS Negl Trop Dis, 2012;6(2):e1522.
    PMID: 22347515 DOI: 10.1371/journal.pntd.0001522
    Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links