Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
  2. Tay MZ, Tang W, Lee WC, Ong ASM, Novera W, Malleret B, et al.
    J Infect Dis, 2024 Mar 05.
    PMID: 38441336 DOI: 10.1093/infdis/jiae111
    We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. We assessed the PvRBP2a epitopes involved in CD98 binding and recognised by antibodies from infected patients using linear epitope mapping. We identified two epitope clusters mediating PvRBP2a-CD98 interaction. One cluster named cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in P. vivax-infected humans. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood stage vaccine against P. vivax.
  3. Paton NI, Gurumurthy M, Lu Q, Leek F, Kwan P, Koh HWL, et al.
    J Infect Dis, 2024 Mar 25.
    PMID: 38527849 DOI: 10.1093/infdis/jiae104
    BACKGROUND: Interleukin-4 (IL-4), increased in tuberculosis infection, may impair bacterial killing. Blocking IL-4 confers benefit in animal models. We evaluated safety and efficacy of pascolizumab (humanised anti-IL-4 monoclonal antibody) as adjunctive tuberculosis treatment.

    METHODS: Participants with rifampicin-susceptible pulmonary tuberculosis received a single intravenous infusion of pascolizumab or placebo; and standard 6-month tuberculosis treatment. Pascolizumab dose increased in successive cohorts: [1] non-randomised 0.05 mg/kg (n = 4); [2] non-randomised 0.5 mg/kg (n = 4); [3] randomised 2.5 mg/kg (n = 9) or placebo (n = 3); [4] randomised 10 mg/kg (n = 9) or placebo (n = 3). Co-primary safety outcome was study-drug-related grade 4 or serious adverse event (G4/SAE); in all cohorts (1-4). Co-primary efficacy outcome was week-8 sputum culture time-to-positivity (TTP); in randomised cohorts (3-4) combined.

    RESULTS: Pascolizumab levels exceeded IL-4 50% neutralising dose for 8 weeks in 78-100% of participants in cohorts 3-4. There were no study-drug-related G4/SAEs. Median week-8 TTP was 42 days in pascolizumab and placebo groups (p = 0.185). Rate of TTP increase was greater with pascolizumab (difference from placebo 0.011 [95% Bayesian credible interval 0.006 to 0.015] log10TTP/day.

    CONCLUSIONS: There was no evidence to suggest blocking IL-4 was unsafe. Preliminary efficacy findings are consistent with animal models. This supports further investigation of adjunctive anti-IL-4 interventions for tuberculosis in larger phase 2 trials.

  4. Hegde ST, Lee KH, Styczynski A, Jones FK, Gomes I, Das P, et al.
    J Infect Dis, 2024 Mar 14;229(3):733-742.
    PMID: 37925626 DOI: 10.1093/infdis/jiad467
    Nipah virus Bangladesh (NiVB) is a bat-borne zoonosis transmitted between people through the respiratory route. The risk posed by related henipaviruses, including Hendra virus (HeV) and Nipah virus Malaysia (NiVM), is less clear. We conducted a broad search of the literature encompassing both human infections and animal models to synthesize evidence about potential for person-to-person spread. More than 600 human infections have been reported in the literature, but information on viral shedding was only available for 40 case-patients. There is substantial evidence demonstrating person-to-person transmission of NiVB, and some evidence for NiVM. Less direct evidence is available about the risk for person-to-person transmission of HeV, but animals infected with HeV shed more virus in the respiratory tract than those infected with NiVM, suggesting potential for transmission. As the group of known henipaviruses continues to grow, shared protocols for conducting and reporting from human investigations and animal experiments are urgently needed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links