Displaying publications 41 - 43 of 43 in total

Abstract:
Sort:
  1. Peng R, Li D, Wang J, Xiong G, Wang M, Liu D, et al.
    Virol J, 2023 Jun 22;20(1):135.
    PMID: 37349792 DOI: 10.1186/s12985-023-02064-5
    OBJECTIVE: To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine.

    METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2.

    RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes.

    CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.

  2. Tan CS, Bandak DB, Habeebur-Rahman SP, Tan LT, Lim LLA
    Virol J, 2023 Aug 07;20(1):176.
    PMID: 37550752 DOI: 10.1186/s12985-023-02133-9
    SARS-CoV-2 is a zoonotic betacoronavirus that was first reported at the dawn of 2019 in Wuhan, China and has since spread globally, causing an ongoing pandemic. Anthroponotic transmission was reported early, with confirmed infections reported in 26 species to date, including dogs and cats. However, there is a paucity of reports on the transmission of SARS-CoV-2 to companion animals, and thus, we aimed to estimate the seroprevalence of SARS-CoV-2 in dogs and cats in Sarawak, Malaysia. From August 2022 to 2023, we screened plasma samples of 172 companion animals in Sarawak, Malaysia, using a species-independent surrogate virus neutralization test. Our findings revealed the presence of neutralizing antibodies of SARS-CoV-2 in 24.5% (27/110) of dogs and 24.2% (15/62) of cats. To the best of our knowledge, this is the first report of the seroprevalence of SARS-CoV-2 in companion animals in Malaysia. Our findings emphasize the need for pet owners to distance themselves from their pets when unwell, and a strategy must be in place to monitor SARS-CoV-2 in companion animals to assess the potential impact of the virus on companion animals.
  3. Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA
    Virol J, 2024 Mar 06;21(1):55.
    PMID: 38449001 DOI: 10.1186/s12985-024-02328-8
    Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links