Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Alavi R, Akbarzadeh AH, Hermawan H
    J Mech Behav Biomed Mater, 2021 05;117:104413.
    PMID: 33640846 DOI: 10.1016/j.jmbbm.2021.104413
    In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
    Matched MeSH terms: Absorbable Implants*
  2. Prodan Z, Mroczek T, Sivalingam S, Bennink G, Asch FM, Cox M, et al.
    PMID: 33984478 DOI: 10.1053/j.semtcvs.2021.03.036
    Valved allografts and xenografts for reconstruction of the right ventricular outflow tract (RVOT) lack durability and do not grow. We report the first clinical use of a completely bioabsorbable valved conduit (Xeltis pulmonary valve - XPV) in children. Twelve children (six male), median age five (two to twelve) years and median weight 17 (10 to 43) kg, underwent RVOT reconstruction with the XPV. Diagnoses were: pulmonary atresia with ventricular septal defect (VSD) (n=4), tetralogy of Fallot (n=4), common arterial trunk (n=3), and transposition of the great arteries with VSD and pulmonary stenosis (n=1). All had had previous surgery, including prior RVOT conduit implantation in six. Two diameters of conduit 16mm (n=5) and 18mm (n=7) were used. At 24 months none of the patients has required surgical re-intervention, 9 of the 12 are in NYHA functional class I and three patients in NYHA class II. None of the conduits has shown evidence of progressive stenosis, dilation or aneurysm formation. Residual peak gradient of >40 mm Hg was observed in three patients, caused by kinking of the conduit at implantation in 1 and distal stenosis in the peripheral pulmonary arteries in 2 patients. Five patients developed severe pulmonary valve insufficiency (PI); the most common mechanism was prolapse of at least one of the valve leaflets. The XPV conduit is a promising innovation for RVOT reconstruction. Progressive PI requires however an improved design (geometry, thickness) of the valve leaflets.
    Matched MeSH terms: Absorbable Implants
  3. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Absorbable Implants
  4. Low YJ, Kittur MI, Andriyana A, Ang BC, Zainal Abidin NI
    J Mech Behav Biomed Mater, 2023 Apr;140:105723.
    PMID: 36821908 DOI: 10.1016/j.jmbbm.2023.105723
    Poly(glycolide-co-caprolactone) (PGCL) has become a novice to the bioresorbable suture owing to the synergistic properties taken from the homo-polyglycolide (PGA) and polycaprolactone (PCL) such as excellent bioresorption and flexibility. In addition to under conventional monotonic loading, the understanding of mechanical responses of PGCL copolymers under complex loading conditions such as cyclic and stress relaxation is crucial for its application as a surgical suture. Consequently, the present work focuses on evaluating the mechanical responses of PGCL sutures under monotonic, cyclic, and stress relaxation loading conditions. Under monotonic loading, the stress-strain behavior of the PGCL suture was found to be non-linear with noticeable strain-rate dependence. Under cyclic loading, inelastic responses including stress-softening, hysteresis and permanent set were observed. During cyclic loading, both stress-softening and hysteresis were found to increase with the maximum strain. In multi-step stress relaxation, the PGCL sutures were observed to exhibit a strong viscoelastic response. In an attempt to describe the relationship between the stress-relaxation and strain-induced crystallization (SIC) occurring during the loading and relaxation processes, a schematic illustration of the conformational change of polymer chains in PGCL sutures was proposed in this work. Results showed that SIC was dependent on the strain level as well as the loading and relaxation durations. The inelastic phenomena observed in PGCL sutures can be thus correlated to the combined effect of stress relaxation and SIC.
    Matched MeSH terms: Absorbable Implants*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links