Affiliations 

  • 1 Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
  • 2 Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. Electronic address: andri.andriyana@um.edu.my
  • 3 Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
J Mech Behav Biomed Mater, 2023 Apr;140:105723.
PMID: 36821908 DOI: 10.1016/j.jmbbm.2023.105723

Abstract

Poly(glycolide-co-caprolactone) (PGCL) has become a novice to the bioresorbable suture owing to the synergistic properties taken from the homo-polyglycolide (PGA) and polycaprolactone (PCL) such as excellent bioresorption and flexibility. In addition to under conventional monotonic loading, the understanding of mechanical responses of PGCL copolymers under complex loading conditions such as cyclic and stress relaxation is crucial for its application as a surgical suture. Consequently, the present work focuses on evaluating the mechanical responses of PGCL sutures under monotonic, cyclic, and stress relaxation loading conditions. Under monotonic loading, the stress-strain behavior of the PGCL suture was found to be non-linear with noticeable strain-rate dependence. Under cyclic loading, inelastic responses including stress-softening, hysteresis and permanent set were observed. During cyclic loading, both stress-softening and hysteresis were found to increase with the maximum strain. In multi-step stress relaxation, the PGCL sutures were observed to exhibit a strong viscoelastic response. In an attempt to describe the relationship between the stress-relaxation and strain-induced crystallization (SIC) occurring during the loading and relaxation processes, a schematic illustration of the conformational change of polymer chains in PGCL sutures was proposed in this work. Results showed that SIC was dependent on the strain level as well as the loading and relaxation durations. The inelastic phenomena observed in PGCL sutures can be thus correlated to the combined effect of stress relaxation and SIC.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.