Displaying publications 41 - 43 of 43 in total

Abstract:
Sort:
  1. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, et al.
    J Agric Food Chem, 2011 Aug 24;59(16):8733-41.
    PMID: 21726079 DOI: 10.1021/jf201314u
    A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
    Matched MeSH terms: Emulsifying Agents
  2. Kuan YH, Liong MT
    J Agric Food Chem, 2008 Oct 8;56(19):9252-7.
    PMID: 18788708 DOI: 10.1021/jf802011j
    The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.
    Matched MeSH terms: Emulsifying Agents
  3. Shariffa YN, Tan TB, Uthumporn U, Abas F, Mirhosseini H, Nehdi IA, et al.
    Food Res Int, 2017 11;101:165-172.
    PMID: 28941679 DOI: 10.1016/j.foodres.2017.09.005
    The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products.
    Matched MeSH terms: Emulsifying Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links