Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Benacer D, Zain SNM, Lewis JW, Khalid MKNM, Thong KL
    Rev Soc Bras Med Trop, 2017 Mar-Apr;50(2):239-242.
    PMID: 28562762 DOI: 10.1590/0037-8682-0364-2016
    INTRODUCTION:: This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    METHODS:: Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively.

    RESULTS:: The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water.

    CONCLUSIONS:: Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.
    Matched MeSH terms: Leptospira/isolation & purification
  2. Azhari NN, Ramli SNA, Joseph N, Philip N, Mustapha NF, Ishak SN, et al.
    Acta Trop, 2018 Dec;188:68-77.
    PMID: 30145261 DOI: 10.1016/j.actatropica.2018.08.020
    Leptospirosis is caused by the spirochetal bacterium Leptospira of which rodents are considered the most important reservoir. This study aims to determine and characterize virulent Leptospira species among rodents and small mammals found in human settlements and recreational spots within the Hulu Langat and Gombak districts of Selangor, Malaysia; regions that frequently report probable human leptospirosis cases. Molecular analysis revealed an overall Leptospira detection rate of 14.3% among the 266 small mammals captured, and the human settlements were found to have the highest number of isolates (15.1%), followed by recreational sites (14.5%). The molecular characterization conducted based on the lipL32, secY genes and MLST revealed that the strains belonged to four different species, including; Leptospira interrogans (29; 76.3%; ST50, ST238, ST243), L. kirschneri (5; 13.15%; ST110), L. borgpetersenii (3; 8%; ST143) and L. weilii (1; 2.63%; ST242). The study revealed genotypes of circulating strains among small mammals in Malaysia, which include Leptospira locus ST110 L. kirschneri, ST 50 L. interrogans, ST143 L. borgpetersenii and ST242 L. weilii. Among the small mammals studied, 17/105 (16.2%) Rattus norvegicus, 7/59 (11.9%) of Rattus rattus, 5/24 (20.8%) of Maxomys whiteheadi, 4/18 (22.2%) of Sundamys muelleri, 2/22 (9%), Tupaia gliss, 2/16 (12.5%) Rattus tiomanicus and 1/4 (25%) of Suncus murinus carried pathogenic leptospires. The data from the present study may imply that, in addition to rodents, other small mammals also serve as maintenance hosts for Leptospira. Hence, much remains unknown about Leptospira maintenance hosts, and there is need for further investigation to ascertain the prevailing serovars of pathogenic Leptospira in Malaysia. This will assist in the development of efficient diagnostic assays with improved microscopic agglutination test (MAT) panels, and in the implementation of suitable prevention and control measures.
    Matched MeSH terms: Leptospira/isolation & purification
  3. Mohd-Taib FS, Ishak SN, Yusof MA, Azhari NN, Md-Lasim A, Md Nor S, et al.
    Trop Biomed, 2020 Mar 01;37(1):142-154.
    PMID: 33612725
    Leptospirosis is a zoonotic disease caused by bacteria of the genus Leptospira and most often acquired through contact with environments contaminated with leptospires shed in the urine of infected mammals. In urban environment, rodents are well-known as the main carriers of this bacteria, however there were no intensive study on the population structure of these animals, and how it associated with this disease. Hence, we use a case study from an outbreak in a residential area in Selangor, Malaysia, to investigate how community structure of small mammals, associated with the prevalence of Leptospira. One hundred cage traps were placed randomly in and around these houses in five phases with two months interval for a year. Community structures (species, sex, and age) were assigned for each individual, prior to screening for pathogenic Leptospira, using a partial lipL32 gene from the kidney samples. 185 small mammals from four species were captured, Rattus norvegicus (74.5%, N=138), R. rattus (20%, N=37), Tupaia glis (5%, N=9), and Suncus murinus (0.5%, N=1). From this number, 29 individuals were found PCR positive for pathogenic Leptospira (R. norvegicus, N=20; R. rattus, N=6; T. glis, N=2; S. murinus, N=1). The study shows that Leptospira occurrence in the small mammals were significantly correlated to age category and sampling phases, with Spearman Correlation (rs) p=0.02 and p=0.04 respectively. Adult individuals were significantly more prevalent with Leptospira infection, whereby March and June were found to associate with higher Leptospira prevalent among the small mammals, potentially coincide with low rainfall and relative humidity level. This information is important in designing a specific control method for rodents in Leptospira outbreak areas. In addition, intensive sampling and regular cleaning effort were found to significantly reduce the small mammal Leptospira reservoir, thus should be implemented in intervention strategies in the urban environment.
    Matched MeSH terms: Leptospira/isolation & purification
  4. Mohamad Safiee AW, Ali MRM, Fauzi MH, Besari AM, Yean CY, Neela VK, et al.
    PMID: 32085530 DOI: 10.3390/ijerph17041307
    Objectives: Isolation of Leptospira by culture represents a definitive growth and confirmation of the disease, yet it is hampered with its nature of slow growth. With slight modification of culture method, the study aims to isolate and characterize Leptospira spp. from patients with acute febrile illness. Methods: A total of 109 blood samples were collected from patients with acute febrile illness that presented at the Emergency Department of Hospital Universiti Sains Malaysia, Malaysia. Clinical samples were subjected to Leptospira IgM Rapid test, microscopic agglutination test (MAT), isolation by culture method, and direct real-time PCR test. For leptospiral isolation, the samples (whole blood and deposit from spun plasma) were cultured into modified Ellinghausen McCullough Johnson Harris (EMJH) media with and without 5'-fluorouracil (5-FU). In every culture positive sample, partial 16S rRNA gene sequencing was performed for molecular identification of the isolates. Phylogenetic analysis was carried out to determine the genetic relatedness among the isolates. An inhibition of 5-FU study was performed on Leptospirainterrogans serovar Canicola with different concentrations to compare the growth detection of the tested Leptospira with or without 5-FU within 7 days of incubation. Results: Leptospirosis was diagnosed in 14.7% of patients with acute febrile illness. Two Leptospira spp. (n = 2/109, 1.85%) were successfully isolated from whole blood and deposit from spun plasma samples. B004 and B208 samples were positive at day 11 and day 7, respectively, in EMJH media without addition of 5-FU. Sample B004 was identified as Leptospira interrogans and B208 as Leptospira weilli. Phylogenetic analysis confirmed that both of them were within pathogenic group and they were not related. The 5-FU inhibition study revealed that additional of 5-FU at final concentration of 200 µg/mL to EMJH media demonstrated an inhibitory effect on the growth of the tested strain Conclusion: Isolation of Leptospira spp. using EMJH media without addition of 5'-fluorouracil resulted in a better outcome. Two pathogenic Leptospira isolates were successfully cultivated from patients with acute febrile illness that were genetically not related.
    Matched MeSH terms: Leptospira/isolation & purification*
  5. Yeoh TS, Tang TH, Citartan M
    Biotechnol J, 2023 Mar;18(3):e2200418.
    PMID: 36426669 DOI: 10.1002/biot.202200418
    Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira and for rapid diagnostics, direct detection is desirable. LipL32 protein is the most suitable biomarker for direct detection. DNA aptamers are sought to be generated against LipL32 by Systemic Evolution of Ligands via Exponential Enrichment (SELEX). LepDapt-5a is the most potent aptamer candidate among all the candidates, as determined by direct Enzyme-linked Aptasorbent Assay (ELASA). LepDapt-5a was predicted to form a G-quadruplex structure as predicted by QGRS Mapper and validated experimentally by direct ELASA. The diagnostic potential of the aptamer was further tested on a direct and sandwich ELASA platform. A LOD of 106 mL-1 and 105 mL-1 were estimated by direct and sandwich ELASA platforms, respectively, which are within the range associated with leptospiremia levels. The dot blot assay developed was able to attain a LOD of 104 CFU mL-1 against pathogenic Leptospira, which is also within the leptospiremia level. This is the first-ever DNA aptamer and hybrid-heterodimeric aptamer constructed against LipL32. The diagnostic potentiality of the LepDapt-5a DNA aptamer was proven on three major diagnostic platforms, which are direct ELASA, sandwich ELASA, and aptamer-based dot assay.
    Matched MeSH terms: Leptospira/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links