Displaying publications 41 - 60 of 145 in total

Abstract:
Sort:
  1. Levesque DL, Lobban KD, Lovegrove BG
    PMID: 25155185 DOI: 10.1007/s00360-014-0858-4
    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.
    Matched MeSH terms: Mammals/physiology*
  2. Aziz SA, Clements GR, Peng LY, Campos-Arceiz A, McConkey KR, Forget PM, et al.
    PeerJ, 2017;5:e3176.
    PMID: 28413729 DOI: 10.7717/peerj.3176
    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox's diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.
    Matched MeSH terms: Mammals
  3. Camacho-Sanchez M, Hawkins MTR, Tuh Yit Yu F, Maldonado JE, Leonard JA
    PeerJ, 2019;7:e7858.
    PMID: 31608182 DOI: 10.7717/peerj.7858
    Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial factors (e.g., larger diversity in larger areas) are important. The lowland small mammal community was replaced in higher elevations (from above ~1,900 m) with montane communities consisting mainly of high elevation Borneo endemics. The positive correlation we find between elevation and endemism is concordant with a hypothesis that predicts higher endemism with topographical isolation. This supports lineage history and geographic history could be important drivers of species diversity in this region.
    Matched MeSH terms: Mammals
  4. Hron T, Fábryová H, Pačes J, Elleder D
    Retrovirology, 2014;11:84.
    PMID: 25280529 DOI: 10.1186/s12977-014-0084-x
    A significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes.
    Matched MeSH terms: Mammals/virology*
  5. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Mammals
  6. Kitzes J, Shirley R
    Ambio, 2016 Feb;45(1):110-9.
    PMID: 26169084 DOI: 10.1007/s13280-015-0683-3
    In many regions of the world, biodiversity surveys are not routinely conducted prior to activities that lead to land conversion, such as development projects. Here we use top-down methods based on global range maps and bottom-up methods based on macroecological scaling laws to illuminate the otherwise hidden biodiversity impacts of three large hydroelectric dams in the state of Sarawak in northern Borneo. Our retrospective impact assessment finds that the three reservoirs inundate habitat for 331 species of birds (3 million individuals) and 164 species of mammals (110 million individuals). A minimum of 2100 species of trees (900 million individuals) and 17 700 species of arthropods (34 billion individuals) are estimated to be affected by the dams. No extinctions of bird, mammal, or tree species are expected due to habitat loss following reservoir inundation, while 4-7 arthropod species extinctions are predicted. These assessment methods are applicable to any data-limited system undergoing land-use change.
    Matched MeSH terms: Mammals
  7. Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, et al.
    Conserv Biol, 2015 Feb;29(1):122-32.
    PMID: 25065425 DOI: 10.1111/cobi.12337
    Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single-species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade-offs between single- and multispecies corridor approaches. We assessed single-species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species' local abundance as estimated through hierarchical modeling of camera-trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig-tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all-species-combined connectivity scenario with least-cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all-species-combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance-sensitive species to maximize their effectiveness.
    Matched MeSH terms: Mammals/physiology*
  8. Ain-Najwa MY, Yasmin AR, Omar AR, Arshad SS, Abu J, Mohammed HO, et al.
    One Health, 2020 Dec;10:100134.
    PMID: 32405525 DOI: 10.1016/j.onehlt.2020.100134
    West Nile virus (WNV) is a zoonotic mosquito-borne flavivirus that is harbored and amplified by wild birds via the enzootic transmission cycle. Wide range of hosts are found to be susceptible to WNV infection including mammals, amphibians and reptiles across the world. Several studies have demonstrated that WNV was present in the Malaysian Orang Asli and captive birds. However, no data are available on the WNV prevalence in wild birds found in Malaysia. Therefore this study was conducted to determine the serological and molecular prevalence of WNV in wild birds in selected areas in the West Coast of Peninsular Malaysia. Two types of wild birds were screened, namely migratory and resident birds in order to explore any possibility of WNV transmission from the migratory birds to the resident birds. Thus, a cross-sectional study was conducted at the migratory birds sanctuary located in Kuala Gula, Perak and Kapar, Selangor by catching 163 migratory birds, and 97 resident birds from Kuala Gula and Parit Buntar, Perak at different time between 2016 and 2017 (Total, n = 260). Blood and oropharyngeal swabs were collected for serological and molecular analysis, respectively. Serum were screened for WNV antibodies using a commercial competitive ELISA (c-ELISA) (ID Screen® West Nile Competition Multi-species ELISA, ID VET, Montpellier, France) and cross-reactivity towards Japanese Encephalitis virus (JEV) was also carried out using the JEV-double antigen sandwich (DAS) ELISA. Oropharyngeal swabs were subjected to one-step RT-PCR to detect WNV RNA, in which positive reactions were subsequently sequenced. WNV seropositive rate of 18.71% (29/155) at 95% CI (0.131 to 0.260) and molecular prevalence of 15.2% (16/105) at 95% CI (0.092 to 0.239) were demonstrated in migratory and resident wild birds found in West Coast Malaysia. Phylogenetic analyses of the 16 WNV isolates found in this study revealed that the local strains have 99% similarity to the strains from South Africa and were clustered under lineage 2. Evidence of WNV infection in resident and migratory birds were demonstrated in this study. As a summary, intervention between migratory birds, resident birds and mosquitoes might cause the introduction and maintenance of WNV in Malaysia, however the assumption could be further proven by studying the infection dynamics in the mosquitoes present in the studied areas.
    Matched MeSH terms: Mammals
  9. Lim CH, Lee MYM, Soga T, Parhar I
    PMID: 31275244 DOI: 10.3389/fendo.2019.00379
    Spexin (SPX) is a novel neuropeptide, which was first identified in the human genome using bioinformatics. Since then, orthologs of human SPX have been identified in mammalian and non-mammalian vertebrates. The mature sequence of SPX, NWTPQAMLYLKGAQ, is evolutionally conserved across vertebrate species, with some variations in teleost species where Ala at position 13 is substituted by Thr. In mammals, the gene structure of SPX comprises six exons and five introns, however, variation exists within non-mammalian species, goldfish and zebrafish having five exons while grouper has six exons. Phylogenetic and synteny analysis, reveal that SPX is grouped together with two neuropeptides, kisspeptin (KISS) and galanin (GAL) as a family of peptides with a common evolutionary ancestor. A paralog of SPX, termed SPX2 has been identified in non-mammalians but not in the mammalian genome. Ligand-receptor interaction study also shows that SPX acts as a ligand for GAL receptor 2 (2a and 2b in non-mammalian vertebrates) and 3. SPX acts as a neuromodulator with multiple central and peripheral physiological roles in the regulation of insulin release, fat metabolism, feeding behavior, and reproduction. Collectively, this review provides a comprehensive overview of the evolutionary diversity as well as molecular and physiological roles of SPX in mammalian and non-mammalian vertebrate species.
    Matched MeSH terms: Mammals
  10. Brodie JF
    Proc Natl Acad Sci U S A, 2017 11 07;114(45):11998-12002.
    PMID: 29078339 DOI: 10.1073/pnas.1710172114
    Large, fruit-eating vertebrates have been lost from many of the world's ecosystems. The ecological consequences of this defaunation can be severe, but the evolutionary consequences are nearly unknown because it remains unclear whether frugivores exert strong selection on fruit traits. I assessed the macroevolution of fruit traits in response to variation in the diversity and size of seed-dispersing vertebrates. Across the Indo-Malay Archipelago, many of the same plant lineages have been exposed to very different assemblages of seed-dispersing vertebrates. Phylogenetic analysis of >400 plant species in 41 genera and five families revealed that average fruit size tracks the taxonomic and functional diversity of frugivorous birds and mammals. Fruit size was 40.2-46.5% smaller in the Moluccas and Sulawesi (respectively), with relatively depauperate assemblages of mostly small-bodied animals, than in the Sunda Region (Borneo, Sumatra, and Peninsular Malaysia), with a highly diverse suite of large and small animals. Fruit color, however, was unrelated to vertebrate diversity or to the representation of birds versus mammals in the frugivore assemblage. Overhunting of large animals, nearly ubiquitous in tropical forests, could strongly alter selection pressures on plants, resulting in widespread, although trait-specific, morphologic changes.
    Matched MeSH terms: Mammals
  11. Mark JKK, Lim CSY, Nordin F, Tye GJ
    Mol Biol Rep, 2022 Nov;49(11):10593-10608.
    PMID: 35674877 DOI: 10.1007/s11033-022-07651-3
    BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this.

    METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects.

    CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.

    Matched MeSH terms: Mammals
  12. Abedinia A, Ariffin F, Huda N, Nafchi AM
    Int J Biol Macromol, 2017 May;98:586-594.
    PMID: 28174080 DOI: 10.1016/j.ijbiomac.2017.01.139
    The effects of different pretreatments on yield and composition of extraction, physicochemical, and rheological properties of duck feet gelatin (DFG) were investigated. Gelatins were extracted from the whole feet of Pekin duck with an average yield of 4.09%, 3.65%, and 5.75% for acidic (Ac-DFG), alkaline (Al-DFG), and enzymatic (En-DFG) pretreatment on a wet weight basis, respectively. Proteins at 81.38%, 79.41%, 82.55%, and 87.38% were the major composition for Ac-DFG, Al-DFG, En-DFG, and bovine, respectively. Amino acid analysis showed glycine as the predominant amino acid in Ac-DFG, followed by hydroxyproline, proline, and alanine for Ac-DFG, Al-DFG, and En-DFG, respectively. Rheological analysis indicated that the maximum elastic modulus (9972.25Pa) and loss modulus (4956.28Pa) for Ac-DFG gelatin were significantly higher than those of other gelatins. Extracted gelatins contained α1 and α2 chains as the predominant components, and enzymatic gelatin had low molecular weight peptides. Fourier transform infrared spectroscopy showed that the peak of the gelatins was mainly positioned in the amide band region (amides I, II, and III). A considerable loss of molecular-order triple helical structure was also observed after pepsin treatment. In summary, duck feet gelatin has potential to replace as mammalian gelatin in food and pharmaceutical industry.
    Matched MeSH terms: Mammals
  13. Lee PS, Gan HM, Clements GR, Wilson JJ
    Genome, 2016 May 11.
    PMID: 27696907
    Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.
    Matched MeSH terms: Mammals
  14. Gronemeyer T, Coritico F, Wistuba A, Marwinski D, Gieray T, Micheler M, et al.
    Plants (Basel), 2014;3(2):284-303.
    PMID: 27135505 DOI: 10.3390/plants3020284
    Together with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia), the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.
    Matched MeSH terms: Mammals
  15. Williams PJ, Ong RC, Brodie JF, Luskin MS
    Nat Commun, 2021 Mar 12;12(1):1650.
    PMID: 33712621 DOI: 10.1038/s41467-021-21978-8
    Overhunting reduces important plant-animal interactions such as vertebrate seed dispersal and seed predation, thereby altering plant regeneration and even above-ground biomass. It remains unclear, however, if non-hunted species can compensate for lost vertebrates in defaunated ecosystems. We use a nested exclusion experiment to isolate the effects of different seed enemies in a Bornean rainforest. In four of five tree species, vertebrates kill many seeds (13-66%). Nonetheless, when large mammals are excluded, seed mortality from insects and fungi fully compensates for the lost vertebrate predation, such that defaunation has no effect on seedling establishment. The switch from seed predation by generalist vertebrates to specialist insects and fungi in defaunated systems may alter Janzen-Connell effects and density-dependence in plants. Previous work using simulation models to explore how lost seed dispersal will affect tree species composition and carbon storage may require reevaluation in the context of functional redundancy within complex species interactions networks.
    Matched MeSH terms: Mammals
  16. Wetzel FT, Kissling WD, Beissmann H, Penn DJ
    Glob Chang Biol, 2012 Sep;18(9):2707-19.
    PMID: 24501050 DOI: 10.1111/j.1365-2486.2012.02736.x
    Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.
    Matched MeSH terms: Mammals
  17. Inoue T, Kainuma M, Baba K, Oshiro N, Kimura N, Chan EW
    J Intercult Ethnopharmacol, 2017 Jan 3;6(1):121-127.
    PMID: 28163970 DOI: 10.5455/jice.20161229060034
    In this short review, the current knowledge on the botany, ecology, uses, and medicinal properties of the multipurpose Garcinia subelliptica (Fukugi) is updated. As yet, there are no reviews on this indigenous and heritage coastal tree species of the Ryukyu Islands in Japan, which has ethnocultural, ecological, and pharmacological significance. Planted by the Okinawan people some 300 years ago, Fukugi trees serve as windbreaks and accord protection against the destructive typhoons. The species has become a popular ornamental tree, and its bark has been used for dyeing fabrics. It forms part of the food chain for mammals and insects and serves as nesting sites for birds. Endowed with bioactive compounds of benzophenones, xanthones, biflavonoids, and triterpenoids, G. subelliptica possesses anticancer, anti-inflammatory, anti-tyrosinase, trypanocidal, antibacterial, DNA topoisomerase inhibitory, DNA strand scission, choline acetyltransferase enhancing, hypoxia-inducible factor-1 inhibitory, and antiandrogenic activities. Fukugetin and fukugiside are two novel biflavonoids named after the species. The chemical constituents of Fukugi fruits when compared with those of mangosteen yielded interesting contrasts.
    Matched MeSH terms: Mammals
  18. Ponthan F, Yusoff NM, Soria NM, Heidenreich O, Coffey K
    Curr Protoc Mol Biol, 2015 Jul 01;111:26.2.1-26.2.17.
    PMID: 26131850 DOI: 10.1002/0471142727.mb2602s111
    This unit provides information how to use short interfering RNA (siRNA) for sequence-specific gene silencing in mammalian cells. Several methods for siRNA generation and optimization, as well as recommendations for cell transfection and transduction, are presented.
    Matched MeSH terms: Mammals
  19. Tan JY, Yin WF, Chan KG
    Gut Pathog, 2014;6:29.
    PMID: 25075225 DOI: 10.1186/1757-4749-6-29
    Hafnia alvei is an opportunistic pathogen involved in various types of nosocomical infections. The species has been found to inhabit food and mammalian guts. However, its status as an enteropathogen, and whether the food-inhabiting strains could be a source of gastrointestinal infection remains obscure. In this report we present a draft genome of H. alvei strain FB1 isolated from fish paste meatball, a food popular among Malaysian and Chinese populations. The data was generated on the Illumina MiSeq platform.
    Matched MeSH terms: Mammals
  20. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
    Matched MeSH terms: Mammals*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links