Displaying publications 41 - 60 of 384 in total

Abstract:
Sort:
  1. Tan LL, Chai SP, Mohamed AR
    ChemSusChem, 2012 Oct;5(10):1868-82.
    PMID: 22987439 DOI: 10.1002/cssc.201200480
    Graphene is one of the most promising materials in the field of nanotechnology and has attracted a tremendous amount of research interest in recent years. Due to its large specific surface area, high thermal conductivity, and superior electron mobility, graphene is regarded as an extremely attractive component for the preparation of composite materials. At the same time, the use of photocatalysts, particularly TiO(2), has also been widely studied for their potential in addressing various energy and environmental-related issues. However, bare TiO(2) suffers from low efficiency and a narrow light-response range. Therefore, the combination of graphene and TiO(2) is currently one of the most active interdisciplinary research areas and demonstrations of photocatalytic enhancement are abundant. This Review presents and discusses the current development of graphene-based TiO(2) photocatalysts. The theoretical framework of the composite, the synthetic strategies for the preparation and modification of graphene-based TiO(2) photocatalysts, and applications of the composite are reviewed, with particular attention on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation.
    Matched MeSH terms: Titanium/chemistry*
  2. Tan LL, Ong WJ, Chai SP, Mohamed AR
    Chem Commun (Camb), 2014 Jul 4;50(52):6923-6.
    PMID: 24841282 DOI: 10.1039/c4cc01304b
    A facile and dopant-free strategy was employed to fabricate oxygen-rich TiO2 (O2-TiO2) with enhanced visible light photoactivity. Such properties were achieved by the in situ generation of oxygen through the thermal decomposition of the peroxo-titania complex. The O2-TiO2 photocatalyst exhibited high photoactivity towards CO2 reduction under visible light.
    Matched MeSH terms: Titanium
  3. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
    Matched MeSH terms: Titanium/chemistry*
  4. Esfandyari Bayat A, Junin R, Derahman MN, Samad AA
    Chemosphere, 2015 Sep;134:7-15.
    PMID: 25889359 DOI: 10.1016/j.chemosphere.2015.03.052
    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type.
    Matched MeSH terms: Titanium/chemistry*
  5. Ng KH
    Chemosphere, 2021 May;270:129378.
    PMID: 33422998 DOI: 10.1016/j.chemosphere.2020.129378
    The technical feasibility of TiO2-photocatalysis towards palm oil mill effluent (POME) treatment is well-proven in previous studies. As a continuity, current study evaluated the strengths, weaknesses, opportunities and threats (SWOT) in a concise manner, subsequently discussed its practicality in palm oil industry of Malaysia. Indeed, TiO2-photocatalysis displays a promising technical feasibility in treating POME, but its wide application is economically-suppressed. It is positing that biological-based treatments (including the existing open-ponding system) are more likely to be employed as the major treating approach for POME over TiO2-photocatalysis. This is particularly true as biological-based treatments offer better performance index for concentrated POME with comparatively lower treatment cost and technicality needed. Furthermore, it is also prevailed with high biogas generability, therefore being irreplaceably benchmarked for POME treatment in Malaysia. Instead of replacing biological treatment entirely, the adoption of TiO2-photocatalysis as complementing tertiary treatment for biological-treated-POME is more practical, bestowed to its robust organic-mineralizing feature for low concentration POME. Such integrated system is expected to augment the POME degradation efficiency, hence effectively preserve the environment from POME pollution.
    Matched MeSH terms: Titanium
  6. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah AZ
    Chemosphere, 2021 Jun;272:129588.
    PMID: 33482519 DOI: 10.1016/j.chemosphere.2021.129588
    Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
    Matched MeSH terms: Titanium
  7. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Titanium/chemistry*
  8. Yap JX, Leo CP, Mohd Yasin NH, Derek CJC
    Chemosphere, 2021 Jun;273:129657.
    PMID: 33524750 DOI: 10.1016/j.chemosphere.2021.129657
    Microalgae cultivation using open cultivation systems requires large area and it is susceptible to contamination as well as weather changes. Meanwhile, the closed systems require large capital investment, and they are susceptible to the build-up of dissolved oxygen. Air-liquid interface culture systems with low water-footprint, but high packing density can be used for microalgae cultivation if low-cost culture scaffolds are available. In this study, cellulose-based scaffolds were synthesized using NaOH/urea aqueous solution as the solvent. Titanium dioxide (TiO2), silica gel and polyethylene glycol 1000 (PEG 1000) nanoparticles were added into the membrane scaffolds to increase the hydrophilicity of nutrient absorbing to support the growth of microalgae. The membrane scaffolds were characterized by FTIR, SEM, contact angle, porosity and porometry. All three nanoparticles additives showed their ability in reducing the contact angle of membrane scaffolds from 63.4 ± 2.3° to a range of 52.6 ± 1.2° to 38.8 ± 1.5° due to the hydrophilic properties of the nanoparticles. The decreasing in pore size when nanoparticles were added did not affect the porosity of membrane scaffolds. Cellulose membrane scaffold with TiO2 showed the highest percentage of microalgae Navicula incerta growth rate of 22.1% because of the antibacterial properties of TiO2 in lowering the risk of cell contamination and enhancing the growth of N. incerta. The results exhibited that cellulose-based scaffold with TiO2 added could be an effective support in plant cell culture field.
    Matched MeSH terms: Titanium
  9. Ahmad A, Razali MH, Mamat M, Mehamod FS, Anuar Mat Amin K
    Chemosphere, 2017 Feb;168:474-482.
    PMID: 27855344 DOI: 10.1016/j.chemosphere.2016.11.028
    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO2 nanoparticles onto functionalized-CNTs loaded TiO2, with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium.
    Matched MeSH terms: Titanium/chemistry*
  10. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Titanium/chemistry*
  11. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
    Matched MeSH terms: Titanium/chemistry*
  12. Arifin SNH, Radin Mohamed RMS, Al-Gheethi AA, Wei LC, Yashni G, Fitriani N, et al.
    Chemosphere, 2022 Jan;287(Pt 3):132278.
    PMID: 34826939 DOI: 10.1016/j.chemosphere.2021.132278
    The study explored the characteristics and effectiveness of modified TiO2 nanotubes with zeolite as a composite photocatalyst (MTNZC) for the degradation of triclocarban (TCC) from the aqueous solution. MTNZC samples have been produced via electrochemical anodisation (ECA) followed by electrophoretic deposition (EPD). Three independent factors selected include MTNZC size (0.5-1 cm2), pH (3-10), and irradiation time (10-60 min). The observation revealed that the surface of Ti substrate by the 40 V of anodisation and 3 h of calcination was covered with the array ordered, smooth and optimum elongated nanotubes with average tube length was approximately 5.1 μm. EDS analysis proved the presence of Si, Mg, Al, and Na on MTNZC due to the chemical composition present in the zeolite. The average crystallite size of TiO₂ nanotubes increased from 2.07 to 3.95 nm by increasing anodisation voltage (10, 40, and 60 V) followed by 450 °C of calcination for 1, 3, and 6 h, respectively. The optimisation by RSM shows the F-value (36.12), the p-value of all responses were less than 0.0001, and the 95% confidence level of the model by all the responses indicated the model was significant. The R2 in the range of 0.9433-0.9906 showed the suitability of the model to represent the actual relationship among the parameters. The photocatalytic degradation rate of TCC from the first and the fifth cycles were 94.2 and 77.4%, indicating the applicability of MTNZC to be used for several cycles.
    Matched MeSH terms: Titanium
  13. Santos JS, Fereidooni M, Marquez V, Arumugam M, Tahir M, Praserthdam S, et al.
    Chemosphere, 2022 Feb;289:133170.
    PMID: 34875298 DOI: 10.1016/j.chemosphere.2021.133170
    This study investigates the facile fabrication of interfacial defects assisted amorphous TiO2 nanotubes arrays (am-TNTA) for promoting gas-phase CO2 photoreduction to methane. The am-TNTA catalyst was fabricated via a one-step synthesis, without heat treatment, by anodization of Titanium in Ethylene glycol-based electrolyte in a shorter anodizing time. The samples presented a TiO2 nanostructured array with a nanotubular diameter of 100 ± 10 nm, a wall thickness of 26 ± 5 nm, and length of 3.7 ± 0.3 μm, resulting in a specific surface of 0.75 m2 g. The am-TNTA presented prolonged chemical stability, a high exposed surface area, and a large number of surface traps that can reduce the recombination of the charge carriers. The am-TNTA showed promising photoactivity when tested in the CO2 reduction reaction with water under UV irradiation with a methane production rate of 14.0 μmol gcat-1 h-1 for a pure TiO2 material without any modification procedure. This enhanced photocatalytic activity can be explained in terms of surface defects of the amorphous structure, mainly OH groups that can act as electron traps for increasing the electron lifetime. The CO2 interacts directly with those traps, forming carbonate species, which favors the catalytic conversion to methane. The am-TNTA also exhibited a high stability during six reaction cycles. The photocatalytic activity, the significantly reduced time for synthesis, and high stability for continuous CH4 production make this nanomaterial a potential candidate for a sustainable CO2 reduction process and can be employed for other energy applications.
    Matched MeSH terms: Titanium
  14. Hui KC, Ang WL, Yahya WZN, Sambudi NS
    Chemosphere, 2022 Mar;290:133377.
    PMID: 34952025 DOI: 10.1016/j.chemosphere.2021.133377
    The present work demonstrates the coupling of titanium dioxide, TiO2 nanoparticles (TNP) with N-doped, Bi-doped, and N-Bi co-doped rice husk-derived carbon dots (CDs) via a facile dispersion method, forming respective photocatalyst composites of CDs/TNP, N-CDs/TNP, Bi-CDs/TNP and N-Bi-CDs/TNP. Characterization analyzes verified the successful incorporation of respective CDs samples into TNP, forming photocatalyst composite with narrowed band gap and quenched photoluminescence intensity. Photocatalytic activity of TNP and the respective composites was investigated for photodegradation of diclofenac (DCF) under both simulated sunlight and natural sunlight irradiation. The as-prepared N-Bi-CDs/TNP composite showed the best photocatalytic performance among all composites, able to completely degrade 5 ppm of DCF within 60 min and 180 min under both types of visible light irradiation, respectively. The N-Bi-CDs/TNP composite also showed a TOC removal efficiency up to 87.63%. N-Bi-CDs, worked as photosensitizer and electron reservoir, contributed to the outstanding photocatalytic activity of N-Bi-CDs/TNP, whereby the recombination was prolonged and light absorption was shifted towards the visible light region. Furthermore, the composite of N-Bi-CDs/TNP also demonstrated good stability and reusability over repeated degradation cycles. The photodegradation of DCF resulted into several intermediates, which were identified from LC-MS analysis. The present work could provide an insight on the application of heteroatoms doped and co-doped carbon dots in semiconductor oxide as high performance photocatalysts.
    Matched MeSH terms: Titanium
  15. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
    Matched MeSH terms: Titanium*
  16. Mohammed N, Palaniandy P, Shaik F, Mewada H, Balakrishnan D
    Chemosphere, 2023 Feb;314:137665.
    PMID: 36581118 DOI: 10.1016/j.chemosphere.2022.137665
    In this approach, a batch reactor was employed to study the degradation of pollutants under natural sunlight using TiO2 as a photocatalyst. The effects of photocatalyst dosage, reaction time and pH were investigated by evaluating the percentage removal efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD) and biodegradability (BOD/COD). Design Expert-Response Surface Methodology Box Behnken Design (BBD) and MATLAB Artificial Neural Network - Adaptive Neuro Fuzzy Inference system (ANN-ANFIS) methods were employed to perform the statistical modelling. The experimental values of maximum percentage removal efficiencies were found to be TOC = 82.4, COD = 85.9, BOD = 30.9% and biodegradability was 0.070. According to RSM-BBD and ANFIS analysis, the maximum percentage removal efficiencies were found to be TOC = 90.3, 82.4; COD = 85.4, 85.9; BOD = 28.9, 30.9% and the biodegradability = 0.074, 0.080 respectively at the pH 7.5, reaction time 300 min and photocatalyst dosage of 4 g L-1. The study reveals both models found to be well predicted as compared with experimental values. The values of R2 for RSM-BBD (0.920) and for ANFIS (0.990) models were almost close to 1. The ANFIS model was found to be marginally better than that of RSM-BBD.
    Matched MeSH terms: Titanium*
  17. Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, et al.
    Chemosphere, 2023 Dec;345:140516.
    PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516
    Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
    Matched MeSH terms: Titanium/chemistry
  18. Mustafa A, Lung CY, Mustafa NS, Mustafa BA, Kashmoola MA, Zwahlen RA, et al.
    Clin Oral Implants Res, 2016 Mar;27(3):303-9.
    PMID: 25393376 DOI: 10.1111/clr.12525
    OBJECTIVES: To investigate the effect of eicosapentaenoic acid (EPA)-coated Ti implants on osteoconduction in white New Zealand rabbit mandibles.

    MATERIAL AND METHODS: Sandblasted and cleansed planar titanium specimens with a size of 5 × 5 × 1 mm were coated on one side with 0.25 vol% eicosapentaenoic acid (EPA). The other side of the specimens was kept highly polished (the control side). These specimens were inserted in rabbit mandibles. Twelve rabbits were randomly assigned into three study groups (n = 4). The rabbits were sacrificed at 4, 8, and 12 weeks. The harvested specimens with the implants were assessed for new bone formation on both sides of the implant using CBCT, conventional radiographs, and the biaxial pullout test. The results were statistically analyzed by a nonparametric Kruskal-Wallis test and Friedman's test as multiple comparisons and by Brunner-Langer nonparametric mixed model approach (R Software).

    RESULTS: A significant osteoconductive bone formation was found on the EPA-coated Ti implant surface (P < 0.05) at 8 weeks when compared to the polished surface (control). Biaxial pullout test results showed a significant difference (P < 0.05) after 8 and 12 weeks with a maximum force of 243.8 N, compared to 143.25 N after 4 week.

    CONCLUSION: EPA implant coating promoted osteoconduction on the Ti implant surfaces, enhancing the anchorage of the implant to the surrounding bone in white New Zealand rabbits.

    Matched MeSH terms: Titanium
  19. Shahadat M, Teng TT, Rafatullah M, Arshad M
    Colloids Surf B Biointerfaces, 2015 Feb 1;126:121-37.
    PMID: 25543989 DOI: 10.1016/j.colsurfb.2014.11.049
    This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.
    Matched MeSH terms: Titanium/chemistry*
  20. Syed Bazli Alwi Syed Bakhtiar, Noraina Hafizan Norman, Sarah Haniza Abdul Ghani, Budi Aslinie Md Sabri
    Compendium of Oral Science, 2017;4(1):19-27.
    MyJurnal
    Objectives: To assess and compare the oral health-related quality of life (OHRQoL) of orthodontic patients who had and had not undergone micro-osteoperforations (MOPs) during orthodontic space closure. Methods: 27 orthodontic patients with fixed appliance who are undergoing orthodontic space closure with Niti coil springs were given the validated short version of the Oral Health Impact Profile (Malaysia) Questionnaire (S-OHIP) which was available in both Bahasa Melayu and English, containing 14 items. 17 patients underwent MOPs (MOP group) while 10 patients did not (control). Additive scores (ADD) were calculated by summing the response codes for the 14 items and simple count scores (SC) were calculated by a count of the number of items reported as occurring ‘quite often’ and ‘very often’. Results: A total of 24 patients responded to the questionnaire, with a response rate of 88.9%, and they comprised of 79.2% females and 20.8% males. There is no significant difference in the mean ADD (p = 0.347) and mean SC (p = 0.446) across both groups. Conclusions: The reported oral health-related quality of life is similar for orthodontic patients who did and did not undergo MOPs.
    Matched MeSH terms: Titanium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links