INTRODUCTION: Cyclooxygenase (COX)-2 selective inhibitors are attractive candidates for treatment of ankle sprain because of their efficacy as anti-inflammatory and analgesic agents and their overall safety, including lack of effect on platelet aggregation. The objective of this study was to assess the efficacy and tolerability of celecoxib compared with diclofenac slow release (SR) in the treatment of acute ankle sprain in an Asian population.
METHODS: In this seven-day, multicentre, double-blind, randomised, parallel-group trial, 370 patients with first- or second-degree ankle sprain occurring at or less than 48 hours prior to the first dose of study medication were randomised to receive celecoxib 200 mg bid (189 patients) after a 400 mg loading dose or diclofenac SR 75 mg bid (181 patients). Patients were required to demonstrate moderate to severe ankle pain on weight bearing (45 mm or greater on a 100 mm visual analogue scale [VAS]) at baseline. The primary efficacy end point was the patient's assessment of ankle pain (VAS on full weight bearing) on day 4.
RESULTS: Celecoxib was as effective as diclofenac SR in improving the signs and symptoms of ankle sprain. At day 4, mean VAS scores for celecoxib and diclofenac SR had decreased to 28 mm and 30 mm, respectively. Treatment differences were not statistically significant. Incidence of upper gastrointestinal adverse events was low in both treatment groups (0.5 percent versus 2.2 percent for celecoxib and diclofenac SR, respectively).
CONCLUSION: Celecoxib, a COX-2 selective inhibitor, is as effective as diclofenac SR in treating ankle sprains. With its platelet-sparing properties, celecoxib may offer an advantage over diclofenac SR in managing musculoskeletal injuries.
Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products' derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications.