Displaying publications 41 - 60 of 407 in total

Abstract:
Sort:
  1. Munshi-South J, Bernard H
    J Hered, 2011 May-Jun;102(3):342-6.
    PMID: 21414965 DOI: 10.1093/jhered/esr013
    In this study, we sequenced a partial segment of the mitochondrial control region from 21 proboscis monkeys of the Klias peninsula, the last large population remaining on the west coast of Sabah, Malaysia. Our results showed that this population retains substantial genetic variation, and subpopulations from different river systems in the central and southern portions of the Klias share multiple haplotypes. We also compared our data with previously generated sequences from 2 eastern populations of proboscis monkeys in Sabah and found little evidence of regional genetic structure. Based on these results, we argue that conservation efforts should focus on restoring connectivity between central and southern Klias peninsula proboscis monkeys and discuss future analyses needed to better understand the mitochondrial structure of proboscis monkeys in Sabah.
    Matched MeSH terms: Gene Frequency
  2. Ma ZG, Liu TW, Bo YL
    Int J Neurosci, 2015 Apr;125(4):241-6.
    PMID: 24849299 DOI: 10.3109/00207454.2014.926349
    Many studies have evaluated the association between the HLA-DRA rs3129882 A/G polymorphism and risk for Parkinson's disease (PD) in Chinese-based populations, however, published data remain inconclusive. Therefore, we performed a meta-analysis from all relevant studies to evaluate an association of HLA-DRA rs3129882 A/G polymorphism with susceptibility to PD.
    Matched MeSH terms: Gene Frequency
  3. Roberts-Thomson PJ, Shepherd K, Bradley J, Boey ML
    Rheumatol Int, 1990;10(3):95-8.
    PMID: 2392640
    Low molecular weight IgM (LMW IgM) is the monomeric subunit of the naturally occurring pentameric IgM. It is not seen in health but has been previously observed in systemic lupus erythematosus (SLE) particularly in those patients with active disease and may reflect an adverse prognostic finding. We have therefore studied the presence of LMW IgM in 33 Chinese or Malay SLE patients (Singapore) and 21 Caucasian patients (Adelaide). LMW IgM was measured using filtration chromatography or by a sensitive immunoblotting technique. LMW IgM was observed in all patients in the Adelaide group and in 32 patients in the Singapore group with slightly greater quantities being seen in the Adelaide group. LMW IgM constituted up to 15.3% of the total IgM and was frequently associated with the presence of other low molecular weight IgM oligomers. In both groups LMW IgM correlated significantly with the total IgM levels (P less than 0.01). In a more detailed study in the Singapore group LMW IgM also correlated significantly with the IgM anticardiolipin levels (P = 0.02) but not with IgG anticardiolipin or with IgG or IgM anti-DNA levels or with rheumatoid factor. Patients with more extensive organ involvement had higher levels of LMW IgM but not at a significant level. We conclude that circulating LMW IgM occurs almost universally in SLE, is closely related to the total IgM levels and appears independent of ethnic background. The significance of LMW IgM in this disorder is unclear.
    Matched MeSH terms: Gene Frequency
  4. Welch QB, Lie-Injo Luan Eng, Bolton JM
    Hum. Hered., 1972;22(1):28-37.
    PMID: 4624781
    Matched MeSH terms: Gene Frequency
  5. Welch QB, Luan Eng LI, Bolton JM
    Humangenetik, 1971;14(1):61-3.
    PMID: 5144903
    Matched MeSH terms: Gene Frequency
  6. Pyvovar S, Rudyk I, Isayeva G, Lozyk T, Galchinskaya V, Bondar T
    PMID: 31804204
    The work was aimed at studying the relationship between the efficiency of bisoprolol and the polymorphism of β1- and β2-adrenergic receptors (β-AR) genes in patients with heart failure. The two-year study included 251 patients with heart failure (with myocardial infarction on the background of coronary heart disease). During hospitalization, a standardized examination and prescription of therapy was carried out, including β-adrenergic blocking agent (β1-AB) - bisoprolol. Afterward, 61 (24.4%) patients stopped taking β1-AB (bisoprolol) as a result of intolerance or violation of compliance; 190 patients took bisoprolol for 2 years. The frequency of rehospitalization (RH) due to decompensation of heart failure (HF) (or intravenous injection of loop diuretics), mortality, and the development of a composite endpoint (CE) for 2 years was taken into account. The control group consisted of 55 healthy individuals. Genotyping was performed using 3 polymorphisms (Gly389Arg of the β1-АR gene, Ser49Gly of the β1-АR gene, Gln27Glu of the β2-АR gene) using the polymerase chain reaction. Genetic and epidemiological analysis was carried out using the SNPStats program. The use of bisoprolol with HF reduces the risk of re-hospitalization (odds ratio (OR)=0.519 (0.278-0.967); p=0.037) and CE (OR=0.494 (0.271-0.900); p=0.030) for 2 years of treatment. Treatment of patients with bisoprolol in a dose of >5 mg leads to a decrease in the risk of CE with G/A polymorphism Ser49Gly (c.145A> G) of the β1-AR gene (OR=0.18 (0.04-0.84), with p=0.014). The use of this drug at this dose also leads to a decrease in the frequency of RH and CE with the homozygous genotype C (C/C) of the Gln27Glu polymorphism (c.79C>G) of the β2-AR gene (OR=0.09 (0.02-0.46), at p=0.018 and OR=0.14 (0.04-0.58), at p=0.006, respectively).
    Matched MeSH terms: Gene Frequency
  7. Suadi Z, Siew LC, Tie R, Hui WB, Asam A, Thiew SH, et al.
    J Forensic Sci, 2007 Jan;52(1):231-4.
    PMID: 17209948
    Matched MeSH terms: Gene Frequency*
  8. Yap SN, Phipps ME, Manivasagar M, Bosco JJ
    Immunol Lett, 1999 Jun 01;68(2-3):295-300.
    PMID: 10424435
    The neutrophil antigen (NA)1 and 2 is coded by two recognized allelic forms of Fc gamma receptor IIIB (FcgammaRIIIB). FcgammaRIIIb is a low affinity receptor and preferentially removes immune complexes from the circulation. Systemic lupus erythematosus (SLE) is an autoimmune and polygenic disorder characterized by accumulation of autoimmune complexes. The majority of SLE patients in our medical center are of Chinese ethnicity, followed by Malay and Indian. Recently, studies have focussed on the Fc receptors in different ethnic groups and their relation to SLE. We chose to study the gene distribution of this receptor in the Chinese and Malays population in Malaysia. We designed a polymerase chain reaction allele specific primers (PCR-ASP) method to distinguish the two allelic forms. Genomic DNA was isolated from the peripheral blood of 183 Chinese and 55 Malays SLE patients as well as 100 Chinese and 50 Malays healthy controls. Genotyping of Chinese SLE patients revealed that the gene frequencies for FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 were 0.648 and 0.347, while in the ethnically matched healthy controls they were 0.68 and 0.32, respectively. One out of the 183 Chinese SLE patients was identified as a NA-null due to the absence of PCR product for both alleles. The FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 allele frequencies for both the Malays SLE and healthy controls were 0.62 and 0.38.
    Matched MeSH terms: Gene Frequency
  9. Moutaouakkil Y, Adouani B, Cherrah Y, Lamsaouri J, Bousliman Y
    Ann Indian Acad Neurol, 2019 10 25;22(4):377-383.
    PMID: 31736555 DOI: 10.4103/aian.AIAN_492_18
    Background: Despite many studies suggesting an association between human leukocyte antigen (HLA)-B*15:02 and carbamazepine (CBZ)-induced severe cutaneous adverse drug reactions essentially toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS), the evidence of association in different populations and the degree of association remain uncertain.

    Materials and Methods: The primary analysis was based on population control studies. Data were pooled by means of a random-effects model, and sensitivity, specificity, positive and negative likelihood ratios (LR+ and LR-), diagnostic odds ratios (DOR), and areas under the summary receiver operating characteristic curve (AUC) were calculated.

    Results: In 23 population control studies, HLA-B*15:02 was measured in 373 patients with CBZ-induced TEN/SJS and 3452 patients without CBZ-induced TEN/SJS. The pooled sensitivity, specificity, LR+, LR-, DOR, and AUC were 0.67 (95% confidence interval [CI] = 0.63-0.72), 0.98 (95% CI = 0.98-0.99), 19.73 (95% CI = 10.54-36.92), 0.34 (95% CI = 0.23-0.49), 71.38 (95% CI = 34.89-146.05), and 0.96 (95% CI = 0.92-0.98), respectively. Subgroup analyses for Han Chinese, Thai, and Malaysian populations yielded similar findings. Specifically, racial/ethnic subgroup analyses revealed similar findings with respect to DOR for Han Chinese (99.28; 95% CI = 22.20-443.88), Thai (61.01; 95% CI = 23.05-161.44), and Malaysian (30; 95% CI = 7.08-126.68) populations, which are similar to the pooled DOR for the relationship between the HLA-B*15:02 allele and CBZ-induced TEN/SJS across all populations (71.38; 95% CI = 34.89-146.05).

    Conclusions: The present study reveals that CBZ is the leading cause of TEN/SJS in many countries. Screening of HLA-B*15:02 may help patients to prevent the occurrence of CBZ-induced TEN/SJS, especially in populations with a higher (≥5%) risk allele frequency.

    Matched MeSH terms: Gene Frequency
  10. Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al.
    Transl Psychiatry, 2019 08 27;9(1):205.
    PMID: 31455759 DOI: 10.1038/s41398-019-0532-4
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
    Matched MeSH terms: Gene Frequency
  11. Saini SM, Mancuso SG, Mostaid MS, Liu C, Pantelis C, Everall IP, et al.
    Transl Psychiatry, 2017 Aug 08;7(8):e1196.
    PMID: 28786982 DOI: 10.1038/tp.2017.172
    Genome-wide association study (GWAS) evidence has identified the metabotropic glutamate receptor 3 (GRM3) gene as a potential harbor for schizophrenia risk variants. However, previous meta-analyses have refuted the association between GRM3 single-nucleotide polymorphisms (SNPs) and schizophrenia risk. To reconcile these conflicting findings, we conducted the largest and most comprehensive meta-analysis of 14 SNPs in GRM3 from a total of 11 318 schizophrenia cases, 13 820 controls and 486 parent-proband trios. We found significant associations for three SNPs (rs2237562: odds ratio (OR)=1.06, 95% confidence interval (CI)=1.02-1.11, P=0.017; rs13242038: OR=0.90, 95% CI=0.85-0.96, P=0.016 and rs917071: OR=0.94, 95% CI=0.91-0.97, P=0.003). Two of these SNPs (rs2237562, rs917071) were in strong-to-moderate linkage disequilibrium with the top GRM3 GWAS significant SNP (rs12704290) reported by the Schizophrenia Working Group of the Psychiatric Genomics Consortium. We also found evidence for population stratification related to rs2237562 in that the 'risk' allele was dependent on the population under study. Our findings support the GWAS-implicated link between GRM3 genetic variation and schizophrenia risk as well as the notion that alleles conferring this risk may be population specific.
    Matched MeSH terms: Gene Frequency
  12. Goossens B, Chikhi L, Jalil MF, Ancrenaz M, Lackman-Ancrenaz I, Mohamed M, et al.
    Mol Ecol, 2005 Feb;14(2):441-56.
    PMID: 15660936
    We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches.
    Matched MeSH terms: Gene Frequency
  13. Ang HC, Sornarajah R, Lim SE, Syn CK, Tan-Siew WF, Chow ST, et al.
    Forensic Sci Int, 2005 Mar 10;148(2-3):243-5.
    PMID: 15639622
    Allele frequencies for the 13 CODIS (Combined DNA Index System, USA) STR loci included in the AmpFISTR Profiler Plus and AmpFISTR Cofiler kits (Applied Biosystems, Foster City, USA) were determined in a sample of 197 unrelated Malays in Singapore.
    Matched MeSH terms: Gene Frequency*
  14. King JL, Churchill JD, Novroski NMM, Zeng X, Warshauer DH, Seah LH, et al.
    Forensic Sci Int Genet, 2018 09;36:60-76.
    PMID: 29935396 DOI: 10.1016/j.fsigen.2018.06.005
    The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81-92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10-73 (ASN) to 1.02 × 10-79 (AFA).
    Matched MeSH terms: Gene Frequency
  15. Novroski NMM, King JL, Churchill JD, Seah LH, Budowle B
    Forensic Sci Int Genet, 2016 11;25:214-226.
    PMID: 27697609 DOI: 10.1016/j.fsigen.2016.09.007
    Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data.
    Matched MeSH terms: Gene Frequency
  16. Churchill JD, Novroski NMM, King JL, Seah LH, Budowle B
    Forensic Sci Int Genet, 2017 09;30:81-92.
    PMID: 28651097 DOI: 10.1016/j.fsigen.2017.06.004
    The MiSeq FGx Forensic Genomics System (Illumina) enables amplification and massively parallel sequencing of 59 STRs, 94 identity informative SNPs, 54 ancestry informative SNPs, and 24 phenotypic informative SNPs. Allele frequency and population statistics data were generated for the 172 SNP loci included in this panel on four major population groups (Chinese, African Americans, US Caucasians, and Southwest Hispanics). Single-locus and combined random match probability values were generated for the identity informative SNPs. The average combined STR and identity informative SNP random match probabilities (assuming independence) across all four populations were 1.75E-67 and 2.30E-71 with length-based and sequence-based STR alleles, respectively. Ancestry and phenotype predictions were obtained using the ForenSeq™ Universal Analysis System (UAS; Illumina) based on the ancestry informative and phenotype informative SNP profiles generated for each sample. Additionally, performance metrics, including profile completeness, read depth, relative locus performance, and allele coverage ratios, were evaluated and detailed for the 725 samples included in this study. While some genetic markers included in this panel performed notably better than others, performance across populations was generally consistent. The performance and population data included in this study support that accurate and reliable profiles were generated and provide valuable background information for laboratories considering internal validation studies and implementation.
    Matched MeSH terms: Gene Frequency
  17. Saha N, Tay JS, Carritt B
    Hum. Hered., 1990;40(4):250-2.
    PMID: 1974242
    Three different ethnic groups from Singapore comprising 79 Chinese, 34 Malays and 23 Indians of Dravidian origin, were investigated for the HindIII RFLP at the DNF15S2 locus. The three populations had very similar allele frequencies and the frequency of rarer(S) allele was significantly (p less than 0.01) lower (0.21) in these ethnic groups compared to that in Caucasians (0.41). The phenotypic distributions were at Hardy-Weinberg equilibrium.
    Matched MeSH terms: Gene Frequency
  18. Chen KH, Cann H, Chen TC, Van West B, Cavalli-Sforza L
    Am. J. Phys. Anthropol., 1985 Mar;66(3):327-37.
    PMID: 3857010
    A group of Taiwan aborigines, the Toroko, was typed for 21 classical genetic loci. This is part of an ongoing program aimed at a comprehensive study of Taiwan aborigines. In this first paper a short summary of historical, archeological, and anthropological data in the literature is made, and results of the present survey are compared with older results from other aborigine tribes. An analysis of other neighboring populations from southeast Asia has also been carried out in order to give a preliminary answer to the question of origin of Taiwanese aborigines. Fifteen populations were studied for 13 loci by tree analysis, principal components, and isolation by distance. Tree analysis and principal component analysis gave results in fairly good agreement and indicate three major population clusters: a northeast cluster (Ainu, Korea, Japan, and Ryukyu); a southeast cluster (south China, Thailand, Vietnam, Philippines, Taiwan, and Toroko); and a third cluster including Malaya and Borneo. The positions of Polynesia, Micronesia, and Melanesia are somewhat peripheral. Analysis of the tree shows some potential cases of convergence, perhaps owing to admixture, and of divergence. The analysis of isolation by distance shows that geographic propinquity is a reasonably good predictor of general similarity in this area.
    Matched MeSH terms: Gene Frequency
  19. Chua KH, Ooh YY, Chai HC
    Int. J. Immunogenet., 2016 Oct;43(5):303-9.
    PMID: 27519474 DOI: 10.1111/iji.12287
    Tumour necrosis factor superfamily 4 (TNFSF4) gene has been reported to be associated with systemic lupus erythematosus (SLE) susceptibility due to its encoding for OX40L protein that can increase autoantibody production and cause imbalance of T-cell proliferation. The purpose of this study was to investigate the association of TNFSF4 rs2205960, rs1234315, rs8446748 and rs704840 with SLE in the Malaysian population. A total of 476 patients with SLE and 509 healthy controls were recruited. Real-time polymerase chain reaction (PCR) was applied to genotype the selected single nucleotide polymorphisms (SNPs). Allelic and genotypic frequencies of each SNP were calculated for each ethnic group, and association test was performed using logistic regression. The overall association of each SNP in Malaysian patients with SLE was determined with meta-analysis. The frequency of minor T allele of TNFSF4 rs2205960 was significant in Chinese and Indian patients with SLE, with P values of 0.05 (OR = 1.27, 95% CI: 1.00-1.61) and 0.004 (OR = 3.16, 95% CI: 1.41-7.05), respectively. Significant association of minor G allele of rs704840 with SLE was also observed in Chinese (P = 0.03, OR = 1.26, 95% CI: 1.02-1.56). However, after Bonferroni correction, only T allele of rs2205960 remained significantly associated with Indian cohort. Overall, minor G allele of rs704840 showed significant association with SLE in the Malaysian population with P values of 0.05 (OR = 1.20, 95% CI: 1.00-1.43). We suggested TNFSF4 rs704840 could be the potential SLE risk factors in the Malaysian population.
    Matched MeSH terms: Gene Frequency
  20. Chan KL
    Hum. Hered., 1971;21(2):173-9.
    PMID: 5127408
    Matched MeSH terms: Gene Frequency
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links