Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations.
Photovoltaic (PV) system is the cleanest form of electricity generation, and it is the only form with no effect on the environment at all. However, some environmental challenges persist, which must be overcome before solar energy may be used to represent a source of truly clean energy. This paper aims to study the stability and dynamic behavior of a grid-connected environmentally friendly photovoltaic energy system using the bifurcation theory. This theory introduces a systematic method for stability analysis of dynamic systems, under changes in the system parameters. To produce bifurcation diagrams based on the bifurcation theory, a parameter is constantly changed in each step, using MATLAB and AUTO, and eigenvalues are monitored simultaneously. Considering how the eigenvalues approach the system's imaginary axis in accordance with the changes in the targeted parameter, the occurred saddle-node and Hopf bifurcations of the grid-connected PV system are extracted. Using the obtained bifurcations, the system's dynamic stability limits against changes in controlled (controller coefficients) and systematic parameters (such as the Thevenin impedance network) are found.
Human usage of non-renewable energy resources has caused many environmental issues, which include air pollution, global warming, and climate irregularities. To counter these issues, researchers have been seeking after alternative renewable energy sources and ways to manage energy more efficiently. This is where energy recovery technologies such as waste heat recovery (WHR) come into play. WHR is a form of waste to energy conversion. Waste heat can be captured and converted into usable energy instead of dumping it into the environment. In the more recent years, the WHR research field has gained great attention in the scientific community as well as in some energy-intensive industries. This article presents a bibliometric overview of the academic research on WHR over the span of 30 years from 1991 to 2020. A total of 5682 documents from Web of Science (WoS) have been retrieved and analyzed using various bibliometric methods, including performance analysis and network analysis. The analyses were performed on different actors in the field, i.e., funding agencies, journals, authors, organizations, and countries. In addition, several network mappings were done based on co-citation, co-authorship, and co-occurrences of keywords analyses. The research identified the most productive and influential actors in the field, established and emergent research topics, as well as the interrelations and collaboration patterns between different actors. The findings can be a robust roadmap for further research in this field.
The rock formation of late Cretaceous-Paleocene metapsammite and metagranite found across Luk Ulo Complex indicated boulders with diameter of approximately 1 m and rounded shape along Luk Ulo River, Indonesia. However, less research found on geochronology and geochemistry has been conducted in study area, and such rocks require comprehensive understanding of magmatism and tectonic environment of Central Java, Indonesia. Therefore, the main objective of this study is to address the geochemical and geochronological age histories across Central Java, Indonesia, using U-Pb zircon dating technique. Generally, most common types of rocks were observed which composed of hornblende and garnet-bearing metapsammite and metagranite. The geochemical study showed that protolith of rocks with hornblende was identified as Cordilleran granitoid (I-type), which originated from magmatic arc with basaltic differentiation. Furthermore, protolith of rocks containing garnet was categorized as Caledonian granitoid (S-type), which is caused by post-collisional orogeny. The cluster observations of magmatic zircons reveal their magmatic ages, which vary from 67.00 ± 1.2 to 69.10 ± 0.91 Ma (late Cretaceous), whereas ages of inherited zircons ranged from 100 ± 5 to 437 ± 13 Ma (early Cretaceous to Silurian). Estimated periods of partial melting were found between 100 ± 5 Ma and 118 ± 4 Ma (early Cretaceous). Comparing the zircon ages of Luk Ulo with the zircon ages from the Sundaland regions reveals that the age distribution patterns are incredibly similar; the peak ages dispersed between the Cretaceous and Triassic periods, as well as Sundaland region was the source of the materials.
A small proportion of the thousands of pesticides on the market today are associated with a disproportionately high incidence of severe acute pesticide poisoning and suicide. Paraquat stands out as one of the most lethal pesticides in common use, frequently involved in fatal incidents due to suicides or accidental exposure. Even though paraquat has been banned in over 67 countries, it is still widely used in many others, particularly in Asia and Latin America. Based on a literature review and consultations, this paper identifies options for replacing paraquat and distils practical lessons from numerous successes around the world. Our aim is to support regulators, policymakers, agronomists and the supply chain sector with practical information related to phasing out paraquat. Production data consistently failed to show any negative effects of banning paraquat on agricultural productivity. A wide range of alternative approaches to weed management and crop defoliation are available, many of which do not rely on herbicides. Over 1.25 million farmers in low- and middle-income countries (LMICs) successfully produce a range of crops for private voluntary standards (PVS) in food and fiber supply chains which prohibit paraquat use. We conclude from the findings of this study that eliminating paraquat will save lives without reducing agricultural productivity. Less hazardous and more sustainable alternatives exist. To enhance successful adoption and uptake of these methods on a wide scale, farmers require training and support within an enabling policy environment.
Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.
Concentration polarization, which creates a thin boundary layer along the membranes in electrochemical reactors and electrodialysis-related processes, is one of the main issues. Membrane spacers provide swirling motion in the stream and distribute fluid toward the membrane, which effectively breaks the polarization layer and maximizes flux steadily. Membrane spacers and the spacer-bulk attack angle are reviewed systematically in the current study. The study then in-depth reviews a ladder-type configuration composed of longitudinal (0° attack angle) and transverse (90° attack angle) filaments, and its effects on solution flow direction and hydrodynamics. The review discovered that, at the tradeoff of high-pressure losses, a laddered spacer can provide mass transfer and mixing activity along the channel while preserving comparable patterns of concentration near the membrane wall. Pressure losses are driven by a change in the direction of velocity vectors. Dead spots in the spacer design that are created by the large contribution of the spacer manifolds can be reduced using the high-pressure drop. Laddered spacers also permit long, tortuous flow paths, which help to create turbulent flow and prevent concentration polarization. The absence of spacers produces limited mixing and broad polarization effects. A major portion of streamlines changes direction at ladder spacer strands positioned transverse to the main flow by moving in a zigzag manner up and down the filaments of the spacer. Flow at 90° is perpendicular to the transverse wires in [Formula: see text]-coordinate, no change in [Formula: see text]-coordinate.
Climate change-related environmental challenges are prompting an increasing number of countries to set carbon-neutral targets. Since 2007, China has pursued numerous initiatives to attain carbon neutrality by 2060, including increasing the percentage of non-fossil energy, developing zero-emission and low-emission technologies, and taking actions that reduce CO2 emissions or boost carbon sinks. As a result, utilizing quarterly data from 2008/Q1 to 2021/Q4, and applying the nonlinear autoregressive distributed lag (NARDL) approach, this study evaluates the effectiveness of the measures taken by China to improve the ecological situation. The results of the study show that the measures enacted to reduce CO2 emissions did not accomplish their ultimate purpose. Specifically: (i) high-speed railways and new energy vehicles do not improve the environment in the long run; (ii) investments and patents in the energy sector, as well as low-carbon sources, will degrade the environment; (iii) only investments in the treatment of environmental pollution will improve the ecological situation. Various policy implications are suggested based on the empirical results in order to attain environmental sustainability.
Green finance can promote economic transformation and technological innovation and play a key role in solving the ecological environment and energy crisis. This paper constructs a comprehensive ecological livable environment evaluation system based on the provincial panel data in China from 2011 to 2019. At the same time, the panel mediation effect and spatial econometric model are used to test the impact of green finance on the ecological and livable environment. The main research conclusions include the following: (1) green finance has significantly improved China's ecological and livable environment; (2) green finance improves the ecological and livable environment by improving the level of technological innovation; (3) the impact of green finance on the ecological livable environment has regional heterogeneity, and green finance in the central provinces has a better effect on the improvement of the ecological livable environment; and (4) the ecological livable environment among Chinese provinces has a significant positive spatial correlation. Among them, green finance has significantly improved the local ecological livable environment but reduced the ecological livable environment of surrounding provinces. Based on the above conclusions, this paper suggests that the government should pay more attention to green finance and technological innovation and coordinate the development of the ecological livable environment among provinces. The research results provide empirical evidence for better developing green finance and improving the ecological livable environment and also provide certain theoretical guidance for China's coordinated regional development and high-quality economic development.
In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L-1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.
The current study aims to provide a roadmap for future research by analyzing the research structures and trends in scholarly publications related to the status of zinc in public health. Only journal articles published between 1978 and 2022 are included in the refined bibliographical outputs retrieved from the Web of Science (WoS) database. The first section announces findings based on WoS categories, such as discipline heterogeneity, times cited and publications over time, and citation reports. The second section then employs VoSViewer software for bibliometric analysis, which includes a thorough examination of co-authorship among researchers, organizations, and countries and a count of all bibliographic databases among documents. The final section discusses the research's weaknesses and strengths in zinc status, public health, and potential future directions; 7158 authors contributed to 1730 papers (including 339 with publications, more than three times). "Keen, C.L." is a researcher with the most publications and a better understanding of zinc status in public health. Meanwhile, the USA has been the epicenter of research on the status of zinc in public health due to the highest percentage of publications with the most citations and collaboration with the rest of the world, with the top institution being the University of California, Davis. Future research can be organized collaboratively based on hot topics from co-occurrence network mapping and bibliographic couplings to improve zinc status and protect public health.
This study aimed to classify the spatiotemporal analysis of rainwater quality before and during the Movement Control Order (MCO) implementation due to the COVID-19 pandemic. Chemometric analysis was carried out on rainwater samples collected from 24-gauge stations throughout Malaysia to determine the samples' chemical content, pH, and conductivity. Other than that, hierarchical agglomerative cluster analysis (HACA) and discriminant analysis (DA) were used to classify the quality of rainwater at each location into four clusters, namely good, satisfactory, moderate, and bad clusters. Note that DA was carried out on the predefined clusters. The reduction in acidity levels occurred in 11 stations (46% of overall stations) after the MCO was implemented. Chemical content and ion abundance followed a downward trend, indicating that Cl- and Na+ were the most dominant among the anions and cations. Apart from that, NH4+, Ca2+, NO3-, and SO42- concentrations were evident in areas with significant anthropogenic activity, as there was a difference in the total chemical content in rainwater when compared before and during the MCO. Based on the dataset before the MCO, 75% of gauge stations were in the good cluster, 8.3% in the satisfactory cluster, 12.5% in the moderate cluster, and 4.2% in the bad cluster. Meanwhile, the dataset during the MCO shows that 72.7% of gauge stations were in the good cluster, 9.1% in the satisfactory cluster, 9.1% in the moderate, and 4.5% in the bad cluster. From this study, the chemometric analysis of the year 2020 rainwater chemical composite dataset strongly indicates that reduction of human activities during MCO affected the quality of rainwater.
Present climate change consists of global warming that is caused by the emission of greenhouse gases, generally carbon dioxide. The study examines the pollution haven, pollution halo, and environmental Kuznets curve for a number of Asian countries during the period of 1985 to 2020. Outcomes suggest that urbanization, gross domestic product per capita, energy consumption, and foreign direct investment inflow have positive effects, while gross domestic product square, foreign direct investment square, and tourism have negative effects on emissions of carbon dioxide. Furthermore, findings support the validity of the environmental Kuznets curve, pollution haven, and pollution halo hypothesis for the selected Asian countries. We also find robust results of rationality of the environmental Kuznets curve hypothesis for Pakistan, Bangladesh, India, China, Indonesia, Korea, Japan, Malaysia, Vietnam, and Singapore; of pollution haven hypothesis for Bangladesh, China, Indonesia, Japan, Pakistan, and Singapore; and of pollution halo hypothesis for Bangladesh, China, Indonesia, Japan, Pakistan, and Singapore.
10,11-Dihydro-10-hydroxy carbamazepine has been degraded in deionized water and wastewater samples using an electrochemical process. The anode used in the treatment process was graphite-PVC. Different factors such as initial concentration, NaCl amount, type of matrix, applied voltage, role of H2O2, and pH solution were investigated in the treatment of 10,11-dihydro-10-hydroxy carbamazepine. From the outcome of the results, it was noticed that the chemical oxidation of the compound followed a pseudo-first-order reaction. The rate constants were ranged between 22 × 10-4 and 483 × 10-4 min-1. After electrochemical degradation of the compound, several by-products were raised, and they were analyzed using an accurate instrument, liquid chromatography-time of flight-mass spectrometry (LC-TOF/MS). In the present study, the treatment of the compound was followed by high energy consumption under 10 V and 0.5 g NaCl, reaching up to 0.65 Wh mg-1 after 50 min. The inhibition of E. coli bacteria after incubation of the treated 10,11-dihydro-10-hydroxy carbamazepine sample was investigated in terms of toxicity.
The rapid growth of the industrial economy has affected the survival of wildlife, and the decline in wildlife resources will in turn have some negative impact on the industrial economy. For the sustainable development of the industrial economy, human beings began to reflect on traditional development thinking and strive to find a development strategy that harmonizes industrial economic development and resource protection, and wildlife protection gradually attracted people's attention. "Protecting wild animals, maintaining ecological balance, and promoting economic development" has become a hot topic in the new century. Wildlife resources are valuable natural resources and play an important role in the ecosystem, which is related to the well-being and future of human beings. In recent years, China has made great progress in wildlife protection, while protecting and expanding wildlife habitats, introducing relevant laws and regulations, and other measures which have been implemented recently. However, there are still shortcomings in the protection of wildlife in China. Over-utilization, habitat loss and degradation, environmental pollution, climate change, weak legal awareness, and indiscriminate hunting all pose serious threats to wildlife in China. In this regard, this paper summarizes the main problems and barriers to wildlife resource conservation and utilization in China. Based on the analytic hierarchy process (AHP), the main technology factors influencing wildlife resource conservation and utilization in China are identified. Finally, the future research development direction of wildlife conservation is discussed based on the critical factors. This can provide some guidance for developing wildlife resource conservation and utilization for a sustainable ecosystem in China.
The study is aimed at investigating the impact of waste management in the context of Industry 4.0 and sustainable development. Data were collected from 257 production managers in the industrial sector using a survey questionnaire and analyzed using SPSS and PLS-SEM. The findings indicated that Industry 4.0 and waste management significantly contribute to achieving sustainable development. The integration of Industry 4.0 technologies and effective waste management practices can help organizations implement sustainable development goals. Practical implications include assisting organizations in implementing Industry 4.0 technologies and waste management strategies based on the 3Rs principle. This can lead to reduced environmental impacts and improved resource efficiency, contributing to sustainable development. Policymakers can also benefit from the study's insights to address waste management challenges and promote sustainable development. The study's originality lies in its incorporation of the cyber-physical system and niche theory to explore how Industry 4.0 can facilitate sustainable waste management. It highlights the transformative potential of Industry 4.0 in the industrial sector, particularly in developing countries. Overall, this research offers a unique contribution to understanding waste management within the context of Industry 4.0 and sustainable development.
Suboptimal management of healthcare waste poses a significant concern that can be effectively tackled by implementing Internet of Things (IoT) solutions to enhance trash monitoring and disposal processes. The potential utilisation of the Internet of Things (IoT) in addressing the requirements associated with biomedical waste management within the Kaduna area was examined. The study included a selection of ten hospitals, chosen based on the criterion of having access to wireless Internet connectivity. The issue of biomedical waste is significant within the healthcare sector since it accounts for a considerable amount of overall waste generation, with estimates ranging from 43.62 to 52.47% across various facilities. Utilisation of (IoT) sensors resulted in the activation of alarms and messages to facilitate the prompt collection of waste. Data collected from these sensors was subjected to analysis to discover patterns and enhance the overall efficiency of waste management practices. The study revealed a positive correlation between the quantity of hospital beds and the daily garbage generated. Notably, hospitals with a higher number of beds were observed to generate a much greater amount of waste per bed. Hazardous waste generated varies by hospital, with one hospital leading in sharps waste (10.98 kgd-1) and chemical waste (21.06 kgd-1). Other hospitals generate considerable amounts of radioactive waste (0.60 kgd-1 and 0.50 kgd-1), pharmaceuticals, and genotoxic waste (16.19 kgd-1), indicating the need for specialised waste management approaches. The study sheds light on the significance of IoT in efficient waste collection and the need for tailored management of hazardous waste.
Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.