Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Bhoo-Pathy N, Peeters PH, Uiterwaal CS, Bueno-de-Mesquita HB, Bulgiba AM, Bech BH, et al.
    Breast Cancer Res, 2015 Jan 31;17:15.
    PMID: 25637171 DOI: 10.1186/s13058-015-0521-3
    INTRODUCTION: Specific coffee subtypes and tea may impact risk of pre- and post-menopausal breast cancer differently. We investigated the association between coffee (total, caffeinated, decaffeinated) and tea intake and risk of breast cancer.

    METHODS: A total of 335,060 women participating in the European Prospective Investigation into Nutrition and Cancer (EPIC) Study, completed a dietary questionnaire from 1992 to 2000, and were followed-up until 2010 for incidence of breast cancer. Hazard ratios (HR) of breast cancer by country-specific, as well as cohort-wide categories of beverage intake were estimated.

    RESULTS: During an average follow-up of 11 years, 1064 premenopausal, and 9134 postmenopausal breast cancers were diagnosed. Caffeinated coffee intake was associated with lower risk of postmenopausal breast cancer: adjusted HR=0.90, 95% confidence interval (CI): 0.82 to 0.98, for high versus low consumption; Ptrend=0.029. While there was no significant effect modification by hormone receptor status (P=0.711), linear trend for lower risk of breast cancer with increasing caffeinated coffee intake was clearest for estrogen and progesterone receptor negative (ER-PR-), postmenopausal breast cancer (P=0.008). For every 100 ml increase in caffeinated coffee intake, the risk of ER-PR- breast cancer was lower by 4% (adjusted HR: 0.96, 95% CI: 0.93 to 1.00). Non-consumers of decaffeinated coffee had lower risk of postmenopausal breast cancer (adjusted HR=0.89; 95% CI: 0.80 to 0.99) compared to low consumers, without evidence of dose-response relationship (Ptrend=0.128). Exclusive decaffeinated coffee consumption was not related to postmenopausal breast cancer risk, compared to any decaffeinated-low caffeinated intake (adjusted HR=0.97; 95% CI: 0.82 to 1.14), or to no intake of any coffee (HR: 0.96; 95%: 0.82 to 1.14). Caffeinated and decaffeinated coffee were not associated with premenopausal breast cancer. Tea intake was neither associated with pre- nor post-menopausal breast cancer.

    CONCLUSIONS: Higher caffeinated coffee intake may be associated with lower risk of postmenopausal breast cancer. Decaffeinated coffee intake does not seem to be associated with breast cancer.

  2. Bamia C, Lagiou P, Jenab M, Aleksandrova K, Fedirko V, Trichopoulos D, et al.
    Br. J. Cancer, 2015 Mar 31;112(7):1273-82.
    PMID: 25742480 DOI: 10.1038/bjc.2014.654
    BACKGROUND: Vegetable and/or fruit intakes in association with hepatocellular carcinoma (HCC) risk have been investigated in case-control studies conducted in specific European countries and cohort studies conducted in Asia, with inconclusive results. No multi-centre European cohort has investigated the indicated associations.

    METHODS: In 486,799 men/women from the European Prospective Investigation into Cancer and nutrition, we identified 201 HCC cases after 11 years median follow-up. We calculated adjusted hazard ratios (HRs) for HCC incidence for sex-specific quintiles and per 100 g d(-1) increments of vegetable/fruit intakes.

    RESULTS: Higher vegetable intake was associated with a statistically significant, monotonic reduction of HCC risk: HR (100 g d(-1) increment): 0.83; 95% CI: 0.71-0.98. This association was consistent in sensitivity analyses with no apparent heterogeneity across strata of HCC risk factors. Fruit intake was not associated with HCC incidence: HR (100 g d(-1) increment): 1.01; 95% CI: 0.92-1.11.

    CONCLUSIONS: Vegetable, but not fruit, intake is associated with lower HCC risk with no evidence for heterogeneity of this association in strata of important HCC risk factors. Mechanistic studies should clarify pathways underlying this association. Given that HCC prognosis is poor and that vegetables are practically universally accessible, our results may be important, especially for those at high risk for the disease.
  3. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

  4. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, et al.
    Epigenomics, 2016 May;8(5):599-618.
    PMID: 26864933 DOI: 10.2217/epi-2016-0001
    AIM: Epigenetic changes may occur in response to environmental stressors, and an altered epigenome pattern may represent a stable signature of environmental exposure.

    MATERIALS & METHODS: Here, we examined the potential of DNA methylation changes in 910 prediagnostic peripheral blood samples as a marker of exposure to tobacco smoke in a large multinational cohort.

    RESULTS: We identified 748 CpG sites that were differentially methylated between smokers and nonsmokers, among which we identified novel regionally clustered CpGs associated with active smoking. Importantly, we found a marked reversibility of methylation changes after smoking cessation, although specific genes remained differentially methylated up to 22 years after cessation.

    CONCLUSION: Our study has comprehensively cataloged the smoking-associated DNA methylation alterations and showed that these alterations are reversible after smoking cessation.

  5. Agudo A, Cayssials V, Bonet C, Tjønneland A, Overvad K, Boutron-Ruault MC, et al.
    Am J Clin Nutr, 2018 Apr 01;107(4):607-616.
    PMID: 29635497 DOI: 10.1093/ajcn/nqy002
    BACKGROUND: Chronic inflammation plays a critical role in the pathogenesis of the 2 major types of gastric cancer. Several foods, nutrients, and nonnutrient food components seem to be involved in the regulation of chronic inflammation.

    OBJECTIVE: We assessed the association between the inflammatory potential of the diet and the risk of gastric carcinoma, overall and for the 2 major subsites: cardia cancers and noncardia cancers.

    DESIGN: A total of 476,160 subjects (30% men, 70% women) from the European Investigation into Cancer and Nutrition (EPIC) study were followed for 14 y, during which 913 incident cases of gastric carcinoma were identified, including 236 located in the cardia, 341 in the distal part of the stomach (noncardia), and 336 with overlapping or unknown tumor site. The dietary inflammatory potential was assessed by means of an inflammatory score of the diet (ISD), calculated with the use of 28 dietary components and their corresponding inflammatory scores. The association between the ISD and gastric cancer risk was estimated by HRs and 95% CIs calculated by multivariate Cox regression models adjusted for confounders.

    RESULTS: The inflammatory potential of the diet was associated with an increased risk of gastric cancer. The HR (95% CI) for each increase in 1 SD of the ISD were 1.25 (1.12, 1.39) for all gastric cancers, 1.30 (1.06, 1.59) for cardia cancers, and 1.07 (0.89, 1.28) for noncardia cancers. The corresponding values for the highest compared with the lowest quartiles of the ISD were 1.66 (1.26, 2.20), 1.94 (1.14, 3.30), and 1.07 (0.70, 1.70), respectively.

    CONCLUSIONS: Our results suggest that low-grade chronic inflammation induced by the diet may be associated with gastric cancer risk. This pattern seems to be more consistent for gastric carcinomas located in the cardia than for those located in the distal stomach. This study is listed on the ISRCTN registry as ISRCTN12136108.

  6. Aglago EK, Huybrechts I, Murphy N, Casagrande C, Nicolas G, Pischon T, et al.
    Clin Gastroenterol Hepatol, 2020 Mar;18(3):654-666.e6.
    PMID: 31252190 DOI: 10.1016/j.cgh.2019.06.031
    BACKGROUND & AIMS: There is an unclear association between intake of fish and long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFAs) and colorectal cancer (CRC). We examined the association between fish consumption, dietary and circulating levels of n-3 LC-PUFAs, and ratio of n-6:n-3 LC-PUFA with CRC using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Dietary intake of fish (total, fatty/oily, lean/white) and n-3 LC-PUFA were estimated by food frequency questionnaires given to 521,324 participants in the EPIC study; among these, 6291 individuals developed CRC (median follow up, 14.9 years). Levels of phospholipid LC-PUFA were measured by gas chromatography in plasma samples from a sub-group of 461 CRC cases and 461 matched individuals without CRC (controls). Multivariable Cox proportional hazards and conditional logistic regression models were used to calculate hazard ratios (HRs) and odds ratios (ORs), respectively, with 95% CIs.

    RESULTS: Total intake of fish (HR for quintile 5 vs 1, 0.88; 95% CI, 0.80-0.96; Ptrend = .005), fatty fish (HR for quintile 5 vs 1, 0.90; 95% CI, 0.82-0.98; Ptrend = .009), and lean fish (HR for quintile 5 vs 1, 0.91; 95% CI, 0.83-1.00; Ptrend = .016) were inversely associated with CRC incidence. Intake of total n-3 LC-PUFA (HR for quintile 5 vs 1, 0.86; 95% CI, 0.78-0.95; Ptrend = .010) was also associated with reduced risk of CRC, whereas dietary ratio of n-6:n-3 LC-PUFA was associated with increased risk of CRC (HR for quintile 5 vs 1, 1.31; 95% CI, 1.18-1.45; Ptrend < .001). Plasma levels of phospholipid n-3 LC-PUFA was not associated with overall CRC risk, but an inverse trend was observed for proximal compared with distal colon cancer (Pheterogeneity = .026).

    CONCLUSIONS: In an analysis of dietary patterns of participants in the EPIC study, we found regular consumption of fish, at recommended levels, to be associated with a lower risk of CRC, possibly through exposure to n-3 LC-PUFA. Levels of n-3 LC-PUFA in plasma were not associated with CRC risk, but there may be differences in risk at different regions of the colon.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links