Displaying publications 61 - 65 of 65 in total

Abstract:
Sort:
  1. Malcolm TTH, Chang WS, Loo YY, Cheah YK, Radzi CWJWM, Kantilal HK, et al.
    Int J Food Microbiol, 2018 Nov 02;284:112-119.
    PMID: 30142576 DOI: 10.1016/j.ijfoodmicro.2018.08.012
    Kitchen mishandling practices contribute to a large number of foodborne illnesses. In this study, the transfer and cross-contamination potential of Vibrio parahaemolyticus from bloody clams to ready-to-eat food (lettuce) was assessed. Three scenarios were investigated: 1) direct cross-contamination, the transfer of V. parahaemolyticus from bloody clams to non-food contact surfaces (hands and kitchen utensils) to lettuce (via slicing), was evaluated; 2) perfunctory decontamination, the efficacy of two superficial cleaning treatments: a) rinsing in a pail of water, and b) wiping with a kitchen towel, were determined; and 3) secondary cross-contamination, the microbial transfer from cleaning residuals (wash water or stained kitchen towel) to lettuce was assessed. The mean of percent transfer rates through direct contact was 3.6%, and an average of 3.5% of total V. parahaemolyticus was recovered from sliced lettuce. The attempted treatments reduced the transferred population by 99.0% (rinsing) and 94.5% (wiping), and the relative amount of V. parahaemolyticus on sliced lettuce was reduced to 0.008%. V. parahaemolyticus exposure via secondary cross-contamination was marginal. The relative amount of V. parahaemolyticus recovered from washed lettuce was 0.07%, and the transfers from stained kitchen towel to lettuce were insubstantial. Our study highlights that V. parahaemolyticus was readily spread in the kitchen, potentially through sharing of non-food contact surfaces. Results from this study can be used to better understand and potentially raising the awareness of proper handling practices to avert the spread of foodborne pathogens.
  2. Pui CF, Wong WC, Chai LC, Lee HY, Noorlis A, Zainazor TC, et al.
    Trop Med Health, 2011 Mar;39(1):9-15.
    PMID: 22028607 DOI: 10.2149/tmh.2010-20
    Salmonellosis outbreaks involving typhoid fever and human gastroenteritis are important diseases in tropical countries where hygienic conditions are often not maintained. A rapid and sensitive method to detect Salmonella spp., Salmonella Typhi and Salmonella Typhimurium is needed to improve control and surveillance of typhoid fever and Salmonella gastroenteritis. Our objective was the concurrent detection and differentiation of these food-borne pathogens using a multiplex PCR. We therefore designed and optimized a multiplex PCR using three specific PCR primer pairs for the simultaneous detection of these pathogens. The concentration of each of the primer pairs, magnesium chloride concentration, and primer annealing temperature were optimized before verification of the specificity of the primer pairs. The target genes produced amplicons at 429 bp, 300 bp and 620 bp which were shown to be 100% specific to each target bacterium, Salmonella spp., Salmonella Typhi and Salmonella Typhimurium, respectively.
  3. Premarathne JMKJK, Anuar AS, Thung TY, Satharasinghe DA, Jambari NN, Abdul-Mutalib NA, et al.
    Front Microbiol, 2017;8:2254.
    PMID: 29255448 DOI: 10.3389/fmicb.2017.02254
    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.
  4. Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, et al.
    Front Microbiol, 2017;8:1087.
    PMID: 28659901 DOI: 10.3389/fmicb.2017.01087
    Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >10(5) MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >10(5) MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
  5. Kuan CH, Rukayadi Y, Ahmad SH, Wan Mohamed Radzi CWJ, Thung TY, Premarathne JMKJK, et al.
    Front Microbiol, 2017;8:1433.
    PMID: 28824567 DOI: 10.3389/fmicb.2017.01433
    Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR) were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count (P > 0.05) of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S. Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S. Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1%) and conventional vegetables (2.7%) as compared to E. coli O157:H7, S. Typhimurium, and S. Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be subjected to appropriate post-harvest handling practices from farm to fork to ensure the quality and safety of the fresh produce.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links