Displaying publications 61 - 75 of 75 in total

Abstract:
Sort:
  1. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
  2. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
  3. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
  4. Tan KK, Aminuddin BS, Tan GH, Sabarul Afian M, Ng MH, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:43-4.
    PMID: 15468810
    The strategy used to generate tissue-engineered bone construct, in view of future clinical application is presented here. Osteoprogenitor cells from periosteum of consenting scoliosis patients were isolated. Growth factors viz TGF-B2, bFGF and IGF-1 were used in concert to increase cell proliferation during in vitro cell expansion. Porous tricalcium phosphate (TCP)-hydroxyapatite (HA) scaffold was used as the scaffold to form 3D bone construct. We found that the addition of growth factors, greatly increased cell growth by 2 to 7 fold. TCP/HA proved to be the ideal scaffold for cell attachment and proliferation. Hence, this model will be further carried out on animal trial.
  5. Ng MH, Aminuddin BS, Tan KK, Tan GH, Sabarul Afian M, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:41-2.
    PMID: 15468809
    Bone marrow stem cells (BMSC), known for its multipotency to differentiate into various mesenchymal cells such as chodrocyte, osteoblasts, adipocytes, etc, have been actively applied in tissue engineering. BMSC have been successfully isolated from bone marrow aspirate and bone marrow scraping from patients of various ages (13-56 years) with as little as 2ml to 5ml aspirate. BMSC isolated from our laboratory showed the presence of a heterogenous population that showed varying prevalence of surface antigens and the presence of telomerase activity albeit weak. Upon osteogenic induction, alkaline phosphatase activity and mineralization activity were observed.
  6. Mazlyzam AL, Aminuddin BS, Lokman BS, Isa MR, Fuzina H, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:39-40.
    PMID: 15468808
    Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
  7. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
  8. Samsudin OC, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:15-6.
    PMID: 15468796
    Treatment of articular cartilage lesions remains a clinical challenge. The uses of prosthetic joint replace allograft and/or autograft transplant carry a risk of complications due to infection, loosening of its component, immunological rejection and morbidity at the donor site. There has been an increasing interest in the management of cartilage damages, owing to the introduction of new therapeutic options. Tissue engineering as a method for tissue restoration begins to provide a potential alternative therapy for autologous grafts transplantations. We aimed to evaluate how well a tissue engineered neocartilage implant, consist of human articular chondrocytes cultured with the presence of autologous serum and mixed in a fresh fibrin derived from patient, would perform in subcutaneous implantation in athymic mice.
  9. Azmi B, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Chua KH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:13-4.
    PMID: 15468795
    Animal serum is commonly used in chondrocytes culture expansion to promote cell proliferation and shorten the time lag before new tissue reconstruction is possible. However, animal serum is not suitable for regeneration of clinical tissue because it has potential risk of viral and prion related disease transmission particularly mad cow disease and foreign protein contamination that can stimulate immune reaction leading to graft rejection. In this context, human serum as homologous supplement has a greater potential as growth promoting agents for human chondrocytes culture.
  10. Munirah S, Aminuddin BS, Chua KH, Fuzina NH, Isa MR, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:9-10.
    PMID: 15468793
    Autologous cells are usually preferred in treating damaged tissue to avoid risks of immunological rejection and transmitting infectious diseases. Since only limited amount of tissue can be obtained without causing morbidity at the donor site, in vitro expansion of isolated cell is essential in order to acquire sufficient number of cells to reconstruct neocartilage. The aim of this study was to examine whether serial expanded chondrocytes can be use to generate neocartilage in vivo.
  11. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:7-8.
    PMID: 15468792
    The regulation roles of insulin-like growth factor-1 (IGF-1) with basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in human nasal septum chondrocytes monolayer culture and cartilage engineering was investigated in this study. The role of IGF-1 with bFGF and TGFbeta2 was investigated by measuring chondrocyte growth kinetic and collagen genes expression. IGF-1 together with bFGF and TGFbeta2 promote cartilage tissue engineering, increase type II collagen expression and enhance the histological features of engineered cartilage.
  12. Badrul AH, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:11-2.
    PMID: 15468794
    Culture media supplemented with animal serum e.g. fetal bovine serum; FBS is commonly used for human culture expansion. However, for clinical application, FBS is restricted as its carry a risk of viral or prion transmission. Engineering autologous cartilage with autologous human serum supplementation is seen as a better solution to reduce the risk of transmitting infectious diseases and immune rejection during cartilage transplantation. The purpose of this study is to establish and compare the effects of 10% autologous human serum (AHS) and 10% FBS on the growth of chondrocytes and the formation of tissue engineered human articular cartilage.
  13. Shamsul BS, Tan KK, Chen HC, Aminuddin BS, Ruszymah BH
    Tissue Cell, 2014 Apr;46(2):152-8.
    PMID: 24630213 DOI: 10.1016/j.tice.2014.02.001
    Autogenous bone graft is the gold standard for fusion procedure. However, pain at donor site and inconsistent outcome have left a surgeon to venture into some other technique for spinal fusion. The objective of this study was to determine whether osteogenesis induced bone marrow stem cells with the combination of ceramics granules (HA or TCP/HA), and fibrin could serve as an alternative to generate spinal fusion. The sheep's bone marrow mesenchymal stem cells (BMSCs) were aspirated form iliac crest and cultured for several passages until confluence. BMSCs were trypsinized and seeded on hydroxyapatite scaffold (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) for further osteogenic differentiation in the osteogenic medium one week before implantation. Six adult sheep underwent three-level, bilateral, posterolateral intertransverse process fusions at L1-L6. Three fusion sites in each animal were assigned to three treatments: (a) HA constructs group/L1-L2, (b) TCP/HA constructs group/L2-L3, and (c) autogenous bone graft group/L5-L6. The spinal fusion segments were evaluated using radiography, manual palpation, histological analysis and scanning electron microscopy (SEM) 12 weeks post implantation. The TCP/HA constructs achieved superior lumbar intertransverse fusion compared to HA construct but autogenous bone graft still produced the best fusion among all.
  14. Ude CC, Shamsul BS, Ng MH, Chen HC, Norhamdan MY, Aminuddin BS, et al.
    Tissue Cell, 2012 Jun;44(3):156-63.
    PMID: 22402173 DOI: 10.1016/j.tice.2012.02.001
    Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7±0.4 and 14.6±0.5; unlabeled samples had 13.8±0.5 and 15.4±0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0±5.8, 60.0±2.9 and 95.0±2.9%, while ADSCs had 92.0±1.2, 95.0±1.2 and 98.0±1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0±1.2% to 90.0±0.6% and ADSCs from 94.0±1.2% to 52.0±1.2% (p<0.05) after 24h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p<0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.
  15. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH
    Tissue Cell, 2010 Oct;42(5):282-92.
    PMID: 20810142 DOI: 10.1016/j.tice.2010.07.002
    Monolayer culture expansion remains as a fundamental step to acquire sufficient number of cells for 3D constructs formation. It has been well-documented that cell expansion is however accompanied by cellular dedifferentiation. In order to promote cell growth and circumvent cellular dedifferentiation, we evaluated the effects of Transforming Growth Factor Beta-2 (TGF-β2), Insulin-like Growth Factor-I (IGF-I) and basic Fibroblast Growth Factor (bFGF) combination on articular chondrocytes culture and 'chondrocytes-fibrin' construct formation. Chondrocytes were serially cultured in: (1) F12:DMEM+10% Foetal Bovine Serum (FBS) with growth factors (FD10GFs), (2) F12:DMEM+2%FBS with the growth factors (FD2GFs) and, (3) F12:DMEM+10%FBS without growth factors (FD) as control. Cultured chondrocytes were evaluated by means of growth kinetics parameters, cell cycle analysis, quantitative phenotypic expression of collagen type II, aggrecan core protein sox-9 and collagen type I and, immunochemistry technique. Harvested chondrocytes were incorporated with plasma-derived fibrin and were polymerized to form the 3D constructs and implanted subcutaneously at the dorsum of athymic nude mice for eight (8) weeks. Resulted constructs were assigned for gross inspections and microscopic evaluation using standard histochemicals staining, immunochemistry technique and, quantitative phenotypic expression of cartilage markers to reassure cartilaginous tissue formation. Growth kinetics performance of chondrocytes cultured in three (3) types of culture media from the most to least was in the following order: FD10GFs>FD2GFs>FD. Following growth kinetics analysis, we decided to use FD10GFs and FD (control) for further evaluation and 'chondrocytes-fibrin' constructs formation. Chondrocytes cultured in FD10GFs preserved the normal diploid state (2c) with no evidence of aneuploidy, haploidy or tetraploidy. Expression of cartilage-specific markers namely collagen type II, aggrecan core protein and sox-9 were significantly higher in FD10GFs when compared to control. After implantation, 'chondrocytes-fibrin' constructs exhibited firm, white, smooth and glistening cartilage-like properties. FD10GFs constructs formed better quality cartilage-like tissue than FD constructs in term of overall cartilaginous tissue formation, cells organization and extracellular matrix distribution in the specimens. Cartilaginous tissue formation was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan was confirmed by positive Safranin O staining. Collagen type II exhibited immunopositivity at the pericellular and inter-territorial matrix area. Chondrogenic properties of the construct were further confirmed by the expression of genes encoding collagen type II, aggrecan core protein and sox9. In conclusion, FD10GFs promotes the proliferation of chondrocytes and formation of good quality 'chondrocytes-fibrin' constructs which may have potential use of matrix-induced cell implantation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links