Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Agarwal A, Sharma R, Gupta S, Finelli R, Parekh N, Panner Selvam MK, et al.
    World J Mens Health, 2022 Jul;40(3):347-360.
    PMID: 34169687 DOI: 10.5534/wjmh.210054
    Semen analysis is the first, and frequently, the only step in the evaluation of male fertility. Although the laboratory procedures are conducted according to the World Health Organization (WHO) guidelines, semen analysis and especially sperm morphology assessment is very difficult to standardize and obtain reproducible results. This is mainly due to the highly subjective nature of their evaluation. ICSI is the choice of treatment when sperm morphology is severely abnormal (teratozoospermic). Hence, the standardization of laboratory protocols for sperm morphology evaluation represents a fundamental step to ensure reliable, accurate and consistent laboratory results that avoid misdiagnoses and inadequate treatment of the infertile patient. This article aims to promote standardized laboratory procedures for an accurate evaluation of sperm morphology, including the establishment of quality control and quality assurance policies. Additionally, the clinical importance of sperm morphology results in assisted reproductive outcomes is discussed, along with the clinical management of teratozoospermic patients.
  2. Sharma R, Gupta S, Agarwal A, Henkel R, Finelli R, Parekh N, et al.
    World J Mens Health, 2022 Apr;40(2):191-207.
    PMID: 34169683 DOI: 10.5534/wjmh.210063
    The current WHO 2010 manual for human semen analysis defines leukocytospermia as the presence of peroxidase-positive leukocytes at a concentration >1×106/mL of semen. Granular leukocytes when activated are capable of generating high levels of reactive oxygen species in semen resulting in oxidative stress. Oxidative stress has been correlated with poor sperm quality, increased level of sperm DNA fragmentation and low fertility potential. The presence of leukocytes and pathogens in the semen may be a sign of infection and/or localized inflammatory response in the male genital tract and the accessory glands. Common uro-pathogens including Chlamydia trachomatis, Ureaplasma urealyticum, Neisseria gonorrhoeae, Mycoplasma hominis, and Escherichia coli can cause epididymitis, epididymo-orchitis, or prostatitis. The relationship between leukocytospermia and infection is unclear. Therefore, we describe the pathogens responsible for male genital tract infections and their association with leukocytospermia. The review also examines the diagnostic tests available to identify seminal leukocytes. The role of leukocytospermia in male infertility and its management is also discussed.
  3. Agarwal A, Cannarella R, Saleh R, Boitrelle F, Gül M, Toprak T, et al.
    World J Mens Health, 2023 Apr;41(2):289-310.
    PMID: 36326166 DOI: 10.5534/wjmh.220142
    PURPOSE: Despite the significant role of varicocele in the pathogenesis of male infertility, the impact of varicocele repair (VR) on conventional semen parameters remains controversial. Only a few systematic reviews and meta-analyses (SRMAs) have evaluated the impact of VR on sperm concentration, total motility, and progressive motility, mostly using a before-after analytic approach. No SRMA to date has evaluated the change in conventional semen parameters after VR compared to untreated controls. This study aimed to evaluate the effect of VR on conventional semen parameters in infertile patients with clinical varicocele compared to untreated controls.

    MATERIALS AND METHODS: A literature search was performed using Scopus, PubMed, Embase, and Cochrane databases following the Population Intervention Comparison Outcome (PICOS) model (Population: infertile patients with clinical varicocele; Intervention: VR [any technique]; Comparison: infertile patients with clinical varicocele that were untreated; Outcome: sperm concentration, sperm total count, progressive sperm motility, total sperm motility, sperm morphology, and semen volume; Study type: randomized controlled trials and observational studies).

    RESULTS: A total of 1,632 abstracts were initially assessed for eligibility. Sixteen studies were finally included with a total of 2,420 infertile men with clinical varicocele (1,424 patients treated with VR vs. 996 untreated controls). The analysis showed significantly improved post-operative semen parameters in patients compared to controls with regards to sperm concentration (standardized mean difference [SMD] 1.739; 95% CI 1.129 to 2.349; p<0.001; I²=97.6%), total sperm count (SMD 1.894; 95% CI 0.566 to 3.222; p<0.05; I²=97.8%), progressive sperm motility (SMD 3.301; 95% CI 2.164 to 4.437; p<0.01; I²=98.5%), total sperm motility (SMD 0.887; 95% CI 0.036 to 1.738; p=0.04; I²=97.3%) and normal sperm morphology (SMD 1.673; 95% CI 0.876 to 2.470; p<0.05; I²=98.5%). All the outcomes showed a high inter-study heterogeneity, but the sensitivity analysis showed that no study was sensitive enough to change these results. Publication bias was present only in the analysis of the sperm concentration and progressive motility. No significant difference was found for the semen volume (SMD 0.313; 95% CI -0.242 to 0.868; I²=89.7%).

    CONCLUSIONS: This study provides a high level of evidence in favor of a positive effect of VR to improve conventional semen parameters in infertile men with clinical varicocele. To the best of our knowledge, this is the first SRMA to compare changes in conventional semen parameters after VR with changes in parameters of a control group over the same period. This is in contrast to other SRMAs which have compared semen parameters before and after VR, without reference to a control group. Our findings strengthen the available evidence and have a potential to upgrade professional societies' practice recommendations favoring VR to improve conventional semen parameters in infertile men.

  4. Gupta S, Sharma R, Agarwal A, Parekh N, Finelli R, Shah R, et al.
    World J Mens Health, 2022 Apr;40(2):208-216.
    PMID: 34169680 DOI: 10.5534/wjmh.210069
    Retrograde ejaculation (RE) is a condition defined as the backward flow of the semen during ejaculation, and when present can result in male infertility. RE may be partial or complete, resulting in either low seminal volume or complete absence of the ejaculate (dry ejaculate). RE can result from anatomic, neurological or pharmacological conditions. The treatment approaches outlined are determined by the cause. Alkalinizing urinary pH with oral medications or by adding sperm wash media into the bladder prior to ejaculation may preserve the viability of the sperm. This article provides a step-by-step guide to diagnose RE and the optimal techniques to retrieve sperm.
  5. Agarwal A, Finelli R, Selvam MKP, Leisegang K, Majzoub A, Tadros N, et al.
    World J Mens Health, 2021 Jul;39(3):470-488.
    PMID: 33831977 DOI: 10.5534/wjmh.210025
    PURPOSE: The use of antioxidants is common practice in the management of infertile patients. However, there are no established guidelines by professional societies on antioxidant use for male infertility.

    MATERIALS AND METHODS: Using an online survey, this study aimed to evaluate the practice pattern of reproductive specialists to determine the clinical utility of oxidative stress (OS) testing and antioxidant prescriptions to treat male infertility.

    RESULTS: Responses from 1,327 participants representing 6 continents, showed the largest participant representation being from Asia (46.8%). The majority of participants were attending physicians (59.6%), with 61.3% having more than 10 years of experience in the field of male infertility. Approximately two-thirds of clinicians (65.7%) participated in this survey did not order any diagnostic tests for OS. Sperm DNA fragmentation was the most common infertility test beyond a semen analysis that was prescribed to study oxidative stress-related dysfunctions (53.4%). OS was mainly tested in the presence of lifestyle risk factors (24.6%) or sperm abnormalities (16.3%). Interestingly, antioxidants were prescribed by 85.6% of clinicians, for a duration of 3 (43.7%) or 3-6 months (38.6%). A large variety of antioxidants and dietary supplements were prescribed, and scientific evidence were mostly considered to be modest to support their clinical use. Results were not influenced by the physician's age, geographic origin, experience or training in male infertility.

    CONCLUSIONS: This study is the largest online survey performed to date on this topic and demonstrates 1) a worldwide understanding of the importance of this therapeutic option, and 2) a widely prevalent use of antioxidants to treat male infertility. Finally, the necessity of evidence-based clinical practice guidelines from professional societies is highlighted.

  6. Gupta S, Sharma R, Agarwal A, Boitrelle F, Finelli R, Farkouh A, et al.
    World J Mens Health, 2022 Jul;40(3):380-398.
    PMID: 35021297 DOI: 10.5534/wjmh.210164
    Antisperm antibodies (ASA), as a cause of male infertility, have been detected in infertile males as early as 1954. Multiple causes of ASA production have been identified, and they are due to an abnormal exposure of mature germ cells to the immune system. ASA testing (with mixed anti-globulin reaction, and immunobead binding test) was described in the WHO manual 5th edition and is most recently listed among the extended semen tests in the WHO manual 6th edition. The relationship between ASA and infertility is somewhat complex. The presence of sperm agglutination, while insufficient to diagnose immunological infertility, may indicate the presence of ASA. However, ASA can also be present in the absence of any sperm agglutination. The andrological management of ASA depends on the etiology and individual practices of clinicians. In this article, we provide a comprehensive review of the causes of ASA production, its role in immunological male infertility, clinical indications of ASA testing, and the available therapeutic options. We also provide the details of laboratory procedures for assessment of ASA together with important measures for quality control. Additionally, laboratory and clinical scenarios are presented to guide the reader in the management of ASA and immunological male infertility. Furthermore, we report the results of a recent worldwide survey, conducted to gather information about clinical practices in the management of immunological male infertility.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links