Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Nit B, Samy AL, Tan SL, Vory S, Lim Y, Nugraha RR, et al.
    Public Health Pract (Oxf), 2021 Nov;2:100073.
    PMID: 33521738 DOI: 10.1016/j.puhip.2020.100073
    COVID-19 has resulted in large number of mortalities across the globe. However, Cambodia has recorded low number of COVID-19 cases with no death. A number of factors buttress the accuracy of this phenomenon such as significant support from international health partners, culture of wearing a face mask when sick, timely response of Cambodia's neighbouring countries, and the compliance of the general public to the restrictions. Cambodia started to take stringent measures and augmented efforts to initiate policies and plans to curb the spread of the virus, including but not limited to: closure of inbound and outbound borders, shutting down of schools, and banning religious activities, gatherings and meetings, with more than 50 people. Another source of success of Cambodia is extensive mass testing, complemented with contact tracing. A strategy called "box in" the virus was introduced. Healthcare workers were trained to help in contact tracing and detection at the community level. Measures enacted so far has helped Cambodia control the pandemic. Other countries could adopt and adapt to the policies and best practices of Cambodia. However, possibilities of new waves of the pandemic may affect the country, thus, the Cambodian government needs to be cautious when lifting restrictions to avoid explosion of new cases.
  2. Tan SL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Mar 01;75(Pt 3):308-318.
    PMID: 30867939 DOI: 10.1107/S2056989019001129
    The analysis of atom-to-atom and/or residue-to-residue contacts remains a favoured mode of analysing the mol-ecular packing in crystals. In this contribution, additional tools are highlighted as methods for analysis in order to complement the 'crystallographer's tool', PLATON [Spek (2009). Acta Cryst. D65, 148-155]. Thus, a brief outline of the procedures and what can be learned by using Crystal Explorer [Spackman & Jayatilaka (2009). CrystEngComm11, 19-23] is presented. Attention is then directed towards evaluating the nature, i.e. attractive/weakly attractive/repulsive, of specific contacts employing NCIPLOT [Johnson et al. (2010). J. Am. Chem. Soc. 132, 6498-6506]. This is complemented by a discussion of the calculation of energy frameworks utilizing the latest version of Crystal Explorer. All the mentioned programs are free of charge and straightforward to use. More importantly, they complement each other to give a more complete picture of how mol-ecules assemble in mol-ecular crystals.
  3. Lee SM, Lo KM, Tan SL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Aug 1;72(Pt 8):1223-7.
    PMID: 27536419 DOI: 10.1107/S2056989016012159
    In the solid state, the title compound, C12H16BrNO5 [systematic name: 4-bromo-2-((1E)-{[1,3-dihy-droxy-2-(hy-droxy-meth-yl)propan-2-yl]iminium-yl}meth-yl)-6-meth-oxy-benzen-1-olate], C12H16BrNO5, is found in the keto-amine tautomeric form, with an intra-molecular iminium-N-H⋯O(phenolate) hydrogen bond and an E conformation about the C=N bond. Both gauche (two) and anti relationships are found for the methyl-hydroxy groups. In the crystal, a supra-molecular layer in the bc plane is formed via hy-droxy-O-H⋯O(hy-droxy) and charge-assisted hy-droxy-O-H⋯O(phenolate) hydrogen-bonding inter-actions; various C-H⋯O inter-actions provide additional cohesion to the layers, which stack along the a axis with no directional inter-actions between them. A Hirshfeld surface analysis confirms the lack of specific inter-actions in the inter-layer region.
  4. Yeo CI, Tan SL, Kwong HC, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Aug 01;76(Pt 8):1284-1290.
    PMID: 32844015 DOI: 10.1107/S2056989020009469
    The title phosphanegold(I) thiol-ate, C26H22AuFNOPS or [Au(C8H7FNOS)(C18H15P)], has the AuI centre coordinated by phosphane-P [2.2494 (8) Å] and thiol-ate-S [2.3007 (8) Å] atoms to define a close to linear geometry [P-Au-S = 176.10 (3)°]. The thiol-ate ligand is orientated so that the meth-oxy-O atom is directed towards the Au atom, forming an Au⋯O close contact of 2.986 (2) Å. In the crystal, a variety of inter-molecular contacts are discerned with fluoro-benzene-C-H⋯O(meth-oxy) and phenyl-C-H⋯F inter-actions leading to dimeric aggregates. These are assembled into a three-dimensional architecture by phenyl-C-H⋯S(thiol-ate) and phenyl-C-H⋯π(fluorobenzene, phen-yl) inter-actions. Accordingly, the analysis of the calculated Hirshfeld surface shows 30.8% of all contacts are of the type C⋯H/H⋯C but this is less than the H⋯H contacts, at 44.9%. Other significant contributions to the surface come from H⋯F/F⋯H [8.1%], H⋯S/S⋯H [6.9%] and H⋯O/O⋯H [3.2%] contacts. Two major stabilization energies have contributions from the phenyl-C-H⋯π(fluoro-benzene) and fluoro-benzene-C-H⋯C(imine) inter-actions (-37.2 kcal mol-1), and from the fluoro-benzene-C-H⋯F and phenyl-C-H⋯O inter-actions (-34.9 kcal mol-1), the latter leading to the dimeric aggregate.
  5. Tan SL, Yeo CI, Heard PJ, Akien GR, Halcovitch NR, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Dec 01;72(Pt 12):1799-1805.
    PMID: 27980834
    The title compound, [Cu(C5H5NO2S2)(C18H15P)2]·CHCl3, features a tetra-hedrally coordinated CuI atom within a P2S2 donor set defined by two phosphane P atoms and by two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. Both intra- and inter-molecular hy-droxy-O-H⋯O(hydroxy) hydrogen bonding is observed: the former closes an eight-membered {⋯HOC2NC2O} ring, whereas the latter connects centrosymmetrically related mol-ecules into dimeric aggregates via eight-membered {⋯H-O⋯H-O}2 synthons. The complex mol-ecules are arranged to form channels along the c axis in which reside the chloro-form mol-ecules, being connected by Cl⋯π(arene) and short S⋯Cl [3.3488 (9) Å] inter-actions. The inter-molecular inter-actions have been investigated further by Hirshfeld surface analysis, which shows the conventional hydrogen bonding to be very localized with the main contributors to the surface, at nearly 60%, being H⋯H contacts. Solution NMR studies indicate that whilst the same basic mol-ecular structure is retained in solution, the tri-phenyl-phosphane ligands are highly labile, exchanging rapidly with free Ph3P at room temperature.
  6. Tan SL, Lee SM, Heard PJ, Halcovitch NR, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):213-218.
    PMID: 28217345 DOI: 10.1107/S2056989017000755
    The title compound, [Re(C3H6NS2)(C2H3N)(CO)3], features an octa-hedrally coordinated Re(I) atom within a C3NS2 donor set defined by three carbonyl ligands in a facial arrangement, an aceto-nitrile N atom and two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. In the crystal, di-thio-carbamate-methyl-H⋯O(carbon-yl) inter-actions lead to supra-molecular chains along [36-1]; both di-thio-carbamate S atoms participate in intra-molecular methyl-H⋯S inter-actions. Further but weaker aceto-nitrile-C-H⋯O(carbonyl) inter-actions assemble mol-ecules in the ab plane. The nature of the supra-molecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the C-H⋯O contacts are predominant on the Hirshfeld surface and, indeed, on those of related [Re(CO)3(C3H6NS2)L] structures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links