Displaying publications 61 - 80 of 220 in total

Abstract:
Sort:
  1. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1851-1856.
    PMID: 30574387 DOI: 10.1107/S2056989018016389
    The asymmetric unit of the centrosymmetric title salt, C17H17F6N2O+·C2Cl3O2 -, comprises a single ion-pair. The hy-droxy-O and ammonium-N atoms lie to the same side of the cation, a disposition maintained by a charge-assisted ammonium-N-H⋯O(hy-droxy) hydrogen bond [the Oh-Cm-Cm-Na (h = hy-droxy, m = methine, a = ammonium) torsion angle is 58.90 (19)°]. The piperidin-1-ium group is approximately perpendicular to the quinolinyl residue [Cq-Cm-Cm-Na (q = quinolin-yl) is -178.90 (15)°] so that the cation, to a first approximation, has the shape of the letter L. The most prominent feature of the supra-molecular association in the crystal is the formation of chains along the a-axis direction, being stabilized by charge-assisted hydrogen-bonds. Thus, ammonium-N+-H⋯O-(carboxyl-ate) hydrogen bonds are formed whereby two ammonium cations bridge a pair of carboxyl-ate-O atoms, leading to eight-membered {⋯O⋯HNH}2 synthons. The resulting four-ion aggregates are linked into the supra-molecular chain via charge-assisted hydroxyl-O-H⋯O-(carboxyl-ate) hydrogen bonds. The connections between the chains, leading to a three-dimensional architecture, are of the type C-X⋯π, for X = Cl and F. The analysis of the calculated Hirshfeld surface points to the importance of X⋯H contacts to the surface (X = F, 25.4% and X = Cl, 19.7%) along with a significant contribution from O⋯H hydrogen-bonds (10.2%). Conversely, H⋯H contacts, at 12.4%, make a relatively small contribution to the surface.
  2. Wardell JL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1735-1740.
    PMID: 30574365 DOI: 10.1107/S2056989018015578
    The crystal and mol-ecular structures of the title mol-ecular salts, C4H12NO+·C7H5N2O4 -, (I), C6H16NO+·C7H5N2O4 -, (II), and C4H12NO3 +·C7H5N2O4 -, (III), are described. The common feature of these salts is the presence of the 2-amino-4-nitro-benzoate anion, which exhibit non-chemically significant variations in the conformational relationships between the carboxyl-ate and nitro groups, and between these and the benzene rings they are connected to. The number of ammonium-N-H H atoms in the cations increases from one to three in (I) to (III), respectively, and this variation significantly influences the supra-molecular aggregation patterns in the respective crystals. Thus, a linear supra-molecular chain along [100] sustained by charge-assisted tertiary-ammonium-N-H⋯O(carboxyl-ate), hy-droxy-O-H⋯O(carboxyl-ate) and amino-N-H⋯O(carboxyl-ate) hydrogen-bonds is apparent in the crystal of (I). Chains are connected into a three-dimensional architecture by methyl-C-H⋯O(hy-droxy) and π-π inter-actions, the latter between benzene rings [inter-centroid separation = 3.5796 (10) Å]. In the crystal of (II), a supra-molecular tube propagating along [901] arises as a result of charge-assisted secondary-ammonium-N-H⋯O(carboxyl-ate) and hy-droxy-O-H⋯O(carboxyl-ate) hydrogen-bonding. These are connected by methyl-ene- and methyl-C-H⋯O(nitro) and π-π stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å]. Finally, double-layers parallel to (100) sustained by charge-assisted ammonium-N-H⋯O(carboxyl-ate), ammonium-N-H⋯O(hy-droxy) and hy-droxy-O-H⋯O(carboxyl-ate) hydrogen-bonds are apparent in the crystal of (III). These are connected in a three-dimensional architecture by amine-N-H⋯O(nitro) hydrogen-bonds.
  3. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1764-1771.
    PMID: 30574371 DOI: 10.1107/S205698901801544X
    The asymmetric unit of the title co-crystal, 2,2'-thiodi-benzoic acid-tri-phenyl-phosphane oxide (1/2), C14H10O4S·2C18H15OP, comprises two mol-ecules of 2,2'-thiodi-benzoic acid [TDBA; systematic name: 2-[(2-carb-oxy-phen-yl)sulfan-yl]benzoic acid] and four mol-ecules of tri-phenyl-phosphane oxide [TPPO; systematic name: (di-phenyl-phosphor-yl)benzene]. The two TDBA mol-ecules are twisted about their di-sulfide bonds and exhibit dihedral angles of 74.40 (5) and 72.58 (5)° between the planes through the two SC6H4 residues. The carb-oxy-lic acid groups are tilted out of the planes of the rings to which they are attached forming a range of CO2/C6 dihedral angles of 19.87 (6)-60.43 (8)°. Minor conformational changes are exhibited in the TPPO mol-ecules with the range of dihedral angles between phenyl rings being -2.1 (1) to -62.8 (1)°. In the mol-ecular packing, each TDBA acid mol-ecule bridges two TPPO mol-ecules via hy-droxy-O-H⋯O(oxide) hydrogen bonds to form two three-mol-ecule aggregates. These are connected into a three-dimensional architecture by TPPO-C-H⋯O(oxide, carbon-yl) and TDBA-C-H⋯(oxide, carbon-yl) inter-actions. The importance of H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts to the calculated Hirshfeld surfaces has been demonstrated. In terms of individual mol-ecules, O⋯H/H⋯O contacts are more important for the TDBA (ca 28%) than for the TPPO mol-ecules (ca 13%), as expected from the chemical composition of these species. Computational chemistry indicates the four independent hy-droxy-O-H⋯O(oxide) hydrogen bonds in the crystal impart about the same energy (ca 52 kJ mol-1), with DTBA-phenyl-C-H⋯O(oxide) inter-actions being next most stabilizing (ca 40 kJ mol-1).
  4. Sapari S, Wong S, Ngatiman MF, Misral H, Hasbullah SA
    Acta Crystallogr E Crystallogr Commun, 2018 Nov 01;74(Pt 11):1580-1583.
    PMID: 30443385 DOI: 10.1107/S2056989018014160
    In the title compound, C26H22N2O2, the dihedral angles between the 1-methyl-indole units (A and B) and the benzoic acid moiety (C) are A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. An intra-molecular C-H⋯O inter-action arising from the methyne group helps to establish the conformation. In the crystal, R22(8) carb-oxy-lic acid inversion dimers linked by pairs of O-H⋯O hydrogen bonds are observed. A Hirshfeld surface analysis shows that the greatest contributions are from H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (percentage values = 54.6%, 29.6% and 10.1%, respectively).
  5. Zaini MF, Razak IA, Khairul WM, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Nov 01;74(Pt 11):1589-1594.
    PMID: 30443387 DOI: 10.1107/S2056989018014329
    The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two mol-ecules of (E)-3-(1H-indol-2-yl)-1-(4-nitro-phen-yl)prop-2-en-1-one and a water mol-ecule. The main mol-ecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, mol-ecules are linked by O--H⋯O and N-H⋯O hydrogen bonds, forming chains along [010]. In addition, weak C-H⋯O, C-H⋯π and π-π inter-actions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6-311 G++(d,p) basis level and the HOMO-LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis.
  6. Arafath MA, Kwong HC, Adam F, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2018 Oct 01;74(Pt 10):1460-1462.
    PMID: 30319801 DOI: 10.1107/S2056989018013129
    In the title compound, C18H27N3OS, the cyclo-hexane ring has a chair conformation. The azomethine C=N double bond has an E configuration. The nearly planar hydrazinecarbo-thio-amide moiety and substituted benzene ring are twisted by 31.13 (5)° relative to each other. The amide moiety and the cyclo-hexane ring are almost perpendicular to each other; a similar conformation was previously observed in reported structures. In the crystal, mol-ecules are linked by N-H⋯S hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif.
  7. Zainuri DA, Razak IA, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Oct 01;74(Pt 10):1491-1496.
    PMID: 30319808 DOI: 10.1107/S2056989018013087
    The crystal structures of (E)-1-(anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one, C25H17NO, and (E)-1-(anthracen-9-yl)-3-[4-(di-methyl-amino)-naphthalen-1-yl]prop-2-en-1-one, C29H23NO, are reported. In each case the anthracene ring system and pendant ring system are almost perpendicular to each other [dihedral angles = 75.57 (7)° and 70.26 (10)°, respectively]. In the extended structures, weak N-H⋯O, C-H⋯O and C-H⋯π inter-actions influence the centrosymmetric crystal packing. Density functional theory calculations were carried out using a 6-311 G++(d,p) basis set and the calculated structures are in good agreement with the crystal structures. The compounds were also characterized by UV-Vis absorption spectroscopy and the smallest (HOMO-LUMO) energy gaps of 2.89 and 2.54 eV indicate the enhanced non-linear responses (inter-molecular charge transfers) of these systems.
  8. Zainuri DA, Razak IA, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Oct 01;74(Pt 10):1427-1432.
    PMID: 30319794 DOI: 10.1107/S2056989018012641
    The structures of two new anthracenyl chalcones, namely (E)-1-(anthracen-9-yl)-3-(4-nitro-phen-yl)prop-2-en-1-one, C23H15NO3, and (E)-1-(anthracen-9-yl)-3-(4-iodo-phen-yl)prop-2-en-1-one, C23H15IO are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The mol-ecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6-311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, inter-molecular inter-actions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO-LUMO energies were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The mol-ecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and qu-antify the possible reactive sites.
  9. Ramani VC, Shah RD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1254-1258.
    PMID: 30225111 DOI: 10.1107/S2056989018011477
    The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl-ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra-molecular amide-N-H⋯N(pyrazol-yl) and pyridyl-C-H⋯O(amide) inter-actions are evident and these preclude the participation of the amide-N-H and O atoms in inter-molecular inter-actions. The most notable feature of the mol-ecular packing is the formation of linear supra-molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol-yl) inter-actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.
  10. Zainuri DA, Razak IA, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1302-1308.
    PMID: 30225122 DOI: 10.1107/S2056989018011131
    The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π-π inter-ations and weak C-H⋯O and C-H⋯π inter-actions are observed. The effect of these inter-molecular inter-actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol-ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that these are the most important contribution to the crystal packing.
  11. Murthy TNS, Atioğlu Z, Akkurt M, Chidan Kumar CS, Veeraiah MK, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1201-1205.
    PMID: 30225099 DOI: 10.1107/S2056989018010976
    The mol-ecular structure of the title compound, C13H6Cl4OS, consists of a 2,5-di-chloro-thio-phene ring and a 2,4-di-chloro-phenyl ring linked via a prop-2-en-1-one spacer. The dihedral angle between the 2,5-di-chloro-thio-phene ring and the 2,4-di-chloro-phenyl ring is 12.24 (15)°. The mol-ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The mol-ecular conformation is stabilized by intra-molecular C-H⋯Cl contacts, producing S(6) and S(5) ring motifs. In the crystal, the mol-ecules are linked along the a-axis direction through face-to-face π-stacking between the thio-phene rings and the benzene rings of the mol-ecules in zigzag sheets lying parallel to the bc plane along the c axis. The inter-molecular inter-actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are Cl⋯H/ H⋯Cl (20.8%), followed by Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%).
  12. Zukerman-Schpector J, Dias CDS, Schwab RS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1195-1200.
    PMID: 30225098 DOI: 10.1107/S2056989018010885
    The title compound, C12H10N4O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyano-phenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3)° with the five-membered ring, indicating a twisted mol-ecule. In the crystal, the three-dimensional architecture is sustained by carbonyl-C=O⋯π(triazo-yl), cyano-C≡N⋯π(triazo-yl) (these inter-actions are shown to be attractive based on non-covalent inter-action plots) and π-π stacking inter-actions [inter-centroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by H⋯H (35.9%) and N⋯H (26.2%) contacts to the overall surface, as well as notable contributions by O⋯H (9.9%), C⋯H (8.7%), C⋯C (7.3%) and C⋯N (7.2%) contacts.
  13. Zainuri DA, Razak IA, Arshad S
    Acta Crystallogr E Crystallogr Commun, 2018 Aug 01;74(Pt 8):1087-1092.
    PMID: 30116568 DOI: 10.1107/S205698901800974X
    The title compounds, C24H18O2 and C24H17FO2, were synthesized using the Claisen-Schmidt condensation method and characterized by UV-Vis spectroscopy. Weak inter-molecular C-H⋯O, C-H⋯π and π-π hydrogen-bonding inter-actions help to stabilize the crystal structures of both compounds. The geometrical parameters obtained from the mol-ecular structure were optimized using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level, showing a good correlation with the experimental results. The small HOMO-LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol-ecular systems.
  14. Sanjeeva Murthy TN, Naveen S, Chidan Kumar CS, Veeraiah MK, Quah CK, Siddaraju BP, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Aug 01;74(Pt 8):1134-1137.
    PMID: 30116578 DOI: 10.1107/S2056989018010216
    In the title chalcone-thio-phene derivative, C13H6Cl3FOS, the aromatic rings are inclined to one another by 12.9 (2)°, and the thio-phene ring is affected by π-conjugation. In the crystal, mol-ecules are linked by C-H⋯F hydrogen bonds, forming an R22(8) ring motif. A Hirshfeld surface analysis was conducted to verify the contribution of the different inter-molecular inter-actions. The shape-index surface clearly shows that the two sides of the mol-ecules are involved in the same contacts with neighbouring mol-ecules and the curvedness plots show flat surface patches characteristic of planar stacking.
  15. Sheshadri SN, Atioğlu Z, Akkurt M, Veeraiah MK, Quah CK, Chidan Kumar CS, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Aug 01;74(Pt 8):1063-1066.
    PMID: 30116562 DOI: 10.1107/S2056989018009416
    In the mol-ecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related mol-ecules are linked by pairs of C-H⋯O hydrogen bonds into dimeric units, forming rings of R22(14) graph-set motif. The dimers are further connected by weak C-H⋯O hydrogen inter-actions, forming layers parallel to (10). Hirshfeld surface analysis shows that van der Waals inter-actions constitute the major contribution to the inter-molecular inter-actions, with H⋯H contacts accounting for 29.7% of the surface.
  16. Sheshadri SN, Atioğlu Z, Akkurt M, Chidan Kumar CS, Quah CK, Siddaraju BP, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Jul 01;74(Pt 7):935-938.
    PMID: 30002889 DOI: 10.1107/S205698901800837X
    In title compound, C17H15ClO3, the dihedral angle between the benzene and chloro-phenyl rings is 18.46 (7)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen contacts, enclosing an R22(14) ring motif, and by a further C-H⋯O hydrogen contact, forming a two-dimensional supra-molecular structure extending along the direction parallel to the ac plane. Hirshfeld surface analysis shows that van der Waals inter-actions constitute the major contribution to the inter-molecular inter-actions, with H⋯H contacts accounting for 36.2% of the surface.
  17. Kwong HC, Mahmud Pathi I, Chidan Kumar CS, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2018 Jul 01;74(Pt 7):1030-1034.
    PMID: 30002910 DOI: 10.1107/S2056989018009131
    In the cation of the title salt, C17H23N2O+·Br-, the adamantyl moiety and the pyridiniminium ring are inclined to the ketone bridge by torsion angles of -78.1 (2) (C-C-C=O) and 58.3 (2)° (C-C-N-C), respectively, and the ketone bridge has a C-C-C-N torsion angle of 174.80 (15)°. In the crystal, the cations are connected into chains parallel to the c axis by C-H⋯O hydrogen bonds. The chains are further linked into layers parallel to the bc plane by N-H⋯Br and C-H⋯Br hydrogen bonds, C-H⋯π inter-actions and π-π stacking inter-actions [centroid-to-centroid distance = 3.5657 (11) Å]. A Hirshfeld surface analysis, which comprises the dnorm surface, electrostatic potential map and two-dimensional fingerprint plots, was carried out to verify the contribution of the various inter-molecular inter-actions.
  18. Wardell JL, Wardell SMSV, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Jul 01;74(Pt 7):895-900.
    PMID: 30002881 DOI: 10.1107/S2056989018007703
    In the racemic title mol-ecular salt, C17H17F6N2O+·C2ClF2O3- (systematic name: 2-{[2,8-bis-(tri-fluoro-meth-yl)quinolin-4-yl](hy-droxy)meth-yl}piperidin-1-ium chloro-difluoro-acetate), the cation, which is protonated at the piperidine N atom, has the shape of the letter, L, with the piperidin-1-ium group being approximately orthogonal to the quinolinyl residue [the Cq-Cm-Cm-Na (q = quinolinyl; m = methine; a = ammonium) torsion angle is 177.79 (18)°]. An intra-molecular, charge-assisted ammonium-N-H⋯O(hydrox-yl) hydrogen bond ensures the hy-droxy-O and ammonium-N atoms lie to the same side of the mol-ecule [Oh-Cm-Cm-Na (h = hydrox-yl) = -59.7 (2)°]. In the crystal, charge-assisted hydroxyl-O-H⋯O-(carboxyl-ate) and ammonium-N+-H⋯O-(carboxyl-ate) hydrogen bonds generate a supra-molecular chain along [010]; the chain is consolidated by C-H⋯O inter-actions. Links between chains to form supra-molecular layers are of the type C-Cl⋯π(quinolinyl-C6) and the layers thus formed stack along the a-axis direction without directional inter-actions between them. The analysis of the calculated Hirshfeld surface points to the dominance of F⋯H contacts to the surface (40.8%) with significant contributions from F⋯F (10.5%) and C⋯F (7.0%) contacts.
  19. Kwong HC, Sim AJ, Chidan Kumar CS, Quah CK, Chantrapromma S, Naveen S, et al.
    Acta Crystallogr E Crystallogr Commun, 2018 Jun 01;74(Pt 6):835-839.
    PMID: 29951241 DOI: 10.1107/S2056989018007429
    In the bis-chalcone mol-ecule of the title compound, C24H18O4·2C3H7NO, the central benzene and terminal hy-droxy-phenyl rings form a dihedral angle of 14.28 (11)° and the central C=C double bond adopts a trans configuration. In the crystal, the bis-chalcone and solvate mol-ecules are inter-connected via O-H⋯O hydrogen bonds, which were investigated by Hirshfeld surface analysis. Solid-state fluorescence was measured at λex = 4400 Å. The emission wavelength appeared at 5510 Å, which corresponds to yellow light and the solid-state fluorescence quantum yield (Ff) is 0.18.
  20. Shawkataly OB, Abdelnasir HMH, Sirat SS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Jun 01;74(Pt 6):791-795.
    PMID: 29951231 DOI: 10.1107/S2056989018006989
    The title cluster compound, [Ru3(C19H17PS)(CO)11], comprises a triangle of Ru0 atoms, two of which are bonded to four carbonyl ligands. The third metal atom is bound to three carbonyl ligands and the phosphane-P atom of a dissymmetric phosphane ligand, PPh2(C6H4SMe-4); no Ru⋯S inter-actions are observed. The phosphane occupies an equatorial position and its proximity to an Ru-Ru edge results in the elongation of this bond with respect to the others [2.8933 (2) Å cf. 2.8575 (2) and 2.8594 (3) Å]. In the crystal, phenyl-C-H⋯O(carbon-yl) and carbonyl-O⋯O(carbon-yl) [2.817 (2) Å] inter-actions combine to form a supra-molecular chain propagating along [111]; the chains pack without directional inter-actions between them. The carbonyl-O⋯O(carbon-yl) and other weak contacts have an influence upon the Hirshfeld surfaces with O⋯H contacts making the greatest contribution, i.e. 37.4% cf. 15.8% for O⋯O and 15.6% for H⋯H contacts.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links