Displaying publications 61 - 73 of 73 in total

Abstract:
Sort:
  1. Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A
    Crit Rev Food Sci Nutr, 2023;63(23):6393-6411.
    PMID: 35089844 DOI: 10.1080/10408398.2022.2031099
    Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
  2. Nevara GA, Giwa Ibrahim S, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R
    Crit Rev Food Sci Nutr, 2023;63(23):6330-6343.
    PMID: 35089825 DOI: 10.1080/10408398.2022.2031092
    The excellent health benefits of oil extracted from seeds have increased its application in foods, pharmaceutical and cosmetic industries. This trend leads to a growing research area on their by-products, oilseed meals, to minimize environmental and economic issues. Examples of these by-products are soybean, peanut, kenaf seed, hemp, sesame, and chia seed meals. It is well known that soybean meals have wide applications in food and non-food industries, while other seed meals are not well established. Most oilseed meals are rich in health beneficial compounds and are potential sources of plant protein, dietary fiber, and antioxidants. Many studies have reported on the valorization of these by-products into value-added food products such as bakery and meat products to increase their nutritional and functional properties. These efforts contribute to the sustainability, development of novel functional food and support the zero-waste concept for the environment. This review aims to provide information on the composition of selected oilseed meals from soybean, peanut, hemp, kenaf, sesame and chia seeds, their potential applications in the bakery, meat, beverage, pasta, and other food products, and to highlight the issues and challenges associated with the utilization of oilseed meals into various food products.
  3. de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, et al.
    Crit Rev Food Sci Nutr, 2023;63(26):7945-7982.
    PMID: 35352583 DOI: 10.1080/10408398.2022.2053058
    Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
  4. Alrosan M, Tan TC, Koh WY, Easa AM, Gammoh S, Alu'datt MH
    Crit Rev Food Sci Nutr, 2023;63(25):7677-7691.
    PMID: 35266840 DOI: 10.1080/10408398.2022.2049200
    Demands for high nutritional value-added food products and plant-based proteins have increased over the last decade, in line with the growth of the human population and consumer health awareness. The quality of the plant-based proteins depends on their digestibility, amino acid content, and residues of non-nutritive compounds, such as phenolic compounds, anti-nutritional compounds, antioxidants, and saponins. The presence of these non-nutritive compounds could have detrimental effects on the quality of the proteins. One of the solutions to address these shortcomings of plant-based proteins is fermentation, whereby enzymes that present naturally in microorganisms used during fermentation are responsible for the cleavage of the bonds between proteins and non-nutritive compounds. This mechanism has pronounced effects on the non-nutritive compounds, resulting in the enhancement of protein digestibility and functional properties of plant-based proteins. We assert that the types of plant-based proteins and microorganisms used during fermentation must be carefully addressed to truly enhance the quality, functional properties, and health functionalities of plant-based proteins.Supplemental data for this article is available online at here. show.
  5. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
  6. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al.
    Crit Rev Food Sci Nutr, 2023 Nov;63(33):11830-11858.
    PMID: 35821661 DOI: 10.1080/10408398.2022.2096562
    Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
  7. Liu X, Huang L, Lim L, Fazhan H, Tan K
    PMID: 38294719 DOI: 10.1080/10408398.2023.2301432
    Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
  8. Gao P, Md Shaarani S, Mohd Noor NQI
    PMID: 38059602 DOI: 10.1080/10408398.2023.2289077
    The development of reliable and sensitive detection methods is essential for addressing the escalating concerns surrounding fish and fish products, driven by increasing market demands. This comprehensive review presents recent advances in detection approaches, specifically focusing on microplastic, biological, and chemical hazards associated with these products. The overview encompasses 21 distinct detection methods, categorized based on the type of hazard they target. For microplastic hazards, six methods are visual, spectroscopic, and thermal analyses. Biological hazard identification relies on six approaches employing nucleic-acid sequence, immunological, and biosensor technologies. The investigation of chemical hazards encompasses ten methods, including chromatography, spectroscopy, mass spectrometry, immunological, biosensor, and electrochemical techniques. The review provides in-depth insights into the basic principles, general characteristics, and the recognized advantages and disadvantages of each method. Moreover, it elaborates on recent advancements within these methodologies. The concluding section of the review discusses current challenges and outlines future perspectives for these detection methods. Overall, this comprehensive summary not only serves as a guide for researchers involved in fish safety and quality control but also emphasizes the significance of staying abreast of evolving detection technologies to ensure the continued safety of fish and fish products in response to emerging food safety hazards.
  9. Song J, Luo C, Lim L, Cheong KL, Farhadi A, Tan K
    PMID: 38329037 DOI: 10.1080/10408398.2024.2315446
    Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.
  10. Bo S, Chang SK, Chen Y, Sheng Z, Jiang Y, Yang B
    Crit Rev Food Sci Nutr, 2024;64(9):2490-2512.
    PMID: 36123801 DOI: 10.1080/10408398.2022.2124396
    Rare flavonoids, a special subclass of naturally occurring flavonoids with diverse structures including pterocarpans, aurones, neoflavonoids, homoisoflavones, diphenylpropanes, rotenoids and 2-phenylethyl-chromones. They are mainly found in legumes with numerous health benefits. Rare flavonoids are regarded as minor flavonoids due to their very limited abundance in nature. This review gives an overview of the natural occurrences of rare flavonoids from previous literatures. Recent findings on the biosynthesis of rare flavonoids have been updated by describing their structural characteristics and classifications. Recent findings on the health benefits of rare flavonoids have also been compiled and discussed. Natural rare flavonoids with various characteristics from different subclasses from plant-based food sources are stated. They show a wide range of health benefits, including antibacterial, anticancer, anti-osteoporosis and antiviral activities. Studies reviewed suggest that rare flavonoids possessing different skeletons demonstrate different characteristic bioactivities by discussing their mechanism of actions and structure-activity relationships. Besides, recent advances on the biosynthesis of rare flavonoids, such as pterocarpans, rotenoids and aurones are well-known, while the biosynthesis of other subclasses remain unknown. The perspectives and further applications of rare flavonoids using metabolic engineering strategies also be expected.
  11. Tong SC, Siow LF, Tang TK, Lee YY
    PMID: 36377721 DOI: 10.1080/10408398.2022.2143477
    As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
  12. Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, et al.
    PMID: 36803106 DOI: 10.1080/10408398.2023.2179969
    Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
  13. Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, et al.
    PMID: 38619217 DOI: 10.1080/10408398.2024.2341266
    Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links