Displaying publications 61 - 80 of 1005 in total

Abstract:
Sort:
  1. Malik MU, Rehman ZU, Sharif A, Anwar A
    Environ Sci Pollut Res Int, 2024 Jan;31(2):3014-3030.
    PMID: 38079035 DOI: 10.1007/s11356-023-31197-x
    In terms of achieving sustainable development goals (SDGs), the developing economies are facing many issues, and one of the key issues is environmental degradation. Being a developing economy, Pakistan is also experiencing thought-provoking impacts of global warming and still far away from the ideal track of sustainable development. For addressing environment-related issue and achieving the targets of SDGs, a policy-level reorientation might be necessary. In this view, this study investigates the impact of economic growth, transport infrastructure, urbanization, financial development, and renewable energy consumption on CO2 emissions by using the data of Pakistan during 1990-2020. For this purpose, we use novel wavelet quantile correlation approach. The empirical results of wavelet quantile correlation approach demonstrate that economic growth, transport infrastructure, urbanization, and financial development are responsible for environmental pollution. Whereas, result also claims that renewable energy consumption is a useful tool for reducing environmental pollution in Pakistan. Moreover, the results of FMOLS approach show that 1% increase in economic growth, transportation infrastructure, urbanization, and financial development increases CO2 emissions by 0.240, 0.010, 0.478, and 0.102%, respectively. However, 1% increase in renewable energy usage reduces CO2 emission by 1.083%. Based on the empirical outcomes, this study proposes comprehensive policy framework for achieving the targets of SDG 7 (clean energy), SDG 8 (economic growth), SDG 11 (sustainable cities and communities), and SDG 13 (climate action).
  2. George II, Nawawi MGM, Mohd ZJ, Farah BS
    Environ Sci Pollut Res Int, 2024 Jan;31(2):1719-1747.
    PMID: 38055166 DOI: 10.1007/s11356-023-31117-z
    Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
  3. Lund IH, Shaikh F, Harijan K, Kumar L, Dagar V
    Environ Sci Pollut Res Int, 2024 Jan;31(2):2090-2103.
    PMID: 38051491 DOI: 10.1007/s11356-023-31274-1
    The natural gas (NG) forms the sizeable portion of the primary energy consumption in Pakistan. However, its depleting domestic reserves and increasing demand is challenging to balance the supply-demand in the country. This paper investigates the relationship between NG consumption and driving factors using LMDI-STIRPAT PLSR framework. It is learned that fossil energy structure and per capita gross domestic product (GDP) are most influencing factors on NG consumption, followed by non-clean energy structure, energy intensity, and population. The factors were further modelled to forecast the future values of NG consumption for various scenarios. It is found that NG consumption would be 42.107 MTOE under the high development scenario which would be twice the baseline scenario. It is projected that indigenous NG production will fall from 4 to 2 billion cubic feet/day and demand will increase by 1.5 billion cubic feet/day. Therefore, an optimized strategy is required for a long-term solution to cater this increasing supply-demand.
  4. Waris M, Din BH
    Environ Sci Pollut Res Int, 2024 Jan;31(2):1995-2008.
    PMID: 38049691 DOI: 10.1007/s11356-023-31307-9
    Financial performance is a critical aspect of a company's overall health and sustainability. It directly influences investor decisions, stock market performance, credit ratings, and the company's ability to access capital. Corporate financial performance is influenced by multitude of facts, both internal and external such as disclosure of the information, and social and environmental factors. On the ground of the facts, we aimed to investigate non-financial firms that belong to Asian economies affected by climate policy uncertainty and corporate social responsibility disclosures in terms of their financial performance. To conduct quantitative study analysis, we used the two effective statistical tools such as two-stage regression method and generalized method of movement (GMM). Our results show that corporate high value of social responsibility disclosure and climate policy uncertainty has significant negative impact on return on asset (ROA) of the listed organizations of China, Pakistan, and India. Moreover, CSR disclosure attributes higher values such as social (SC) and governance score (GOV), and climate policy uncertainty (CPU) has significant negative relationship with return on equity (ROE) and earning per share (EPS) respectively, while a higher value of ESG total score and the environmental (ENV) score has a significant positive impact on ROE and EPS. Additionally, the research concludes that climate policy uncertainty is a key factor that motivates CSR disclosure practices, which ultimately improves corporate financial performance. Moreover, we concluded from our finding that the climate policy uncertainty creates ambiguity surrounding government regulations, international agreements, or market mechanisms that affect financial performance. Moreover, environmental disclosure information that has the large part in total ESG scores attract the investors around the globe which leads to rise in the financial performance, while the other attributes of the CSR disclosure decrease performance. This study advocated the great implications for researchers, investors, the government, and regulatory authorities. Policy makers can make the policy about the CSR disclosure for creating the good image of the organization to attract investors around the globe.
  5. Sohail MT, Din NM
    Environ Sci Pollut Res Int, 2024 Jan;31(2):2869-2882.
    PMID: 38066276 DOI: 10.1007/s11356-023-31342-6
    To tackle the growing menace of environmental degradation, the idea of green entrepreneurship has gained popularity, which is the process of creating new goods and technologies to solve environmental problems. Like traditional entrepreneurs, green entrepreneurs also need financial backing from financial institutions. However, no empirical evidence was found regarding the relationship between formal credit and green entrepreneurship. This analysis is an effort to plug this vacuum into the literature by analyzing the impact of formal credit on green entrepreneurship in high, middle, and low-income economies from 2011 to 2021. The study has employed various econometric techniques such as fixed-effects, random-effects, 2SLS, and GMM. The results show that formal credit substantially develops green entrepreneurship in high, middle, low-income, and full samples. Besides formal credit, GDP, environmental pressure, trade openness, technological development, and human capital are crucial in green entrepreneurship development in all samples. Policymakers may collaborate with financial institutions to create and provide specialized financial products and services catering to green entrepreneurs.
  6. Yin J, Ibrahim S, Mohd NNA, Zhong C, Mao X
    Environ Sci Pollut Res Int, 2024 Jan;31(2):2836-2850.
    PMID: 38063969 DOI: 10.1007/s11356-023-31231-y
    Carbon reduction has become a major challenge for China's economy in its transition toward sustainability. The government has been monitoring the behavior of enterprises through regulations to protect the environment, while green finance has rapidly developed in recent years as a new tool to reduce carbon emissions. Despite these measures, few studies have explored the interaction between these two drivers of carbon reduction. Therefore, this study aimed to examine the impact of green finance and environmental regulations on carbon emissions. To determine whether their coordination can lead to greater carbon reduction, the spatial spillover effect of this impact was also investigated. The results show that green finance can reduce carbon emissions and that the interaction of green finance with environmental regulations plays a significant positive role in reducing carbon emissions. Finally, this study concludes that the carbon reduction effects of green finance and environmental regulations have positive spillover effects on adjacent areas.
  7. Tan H, Mong GR, Wong SL, Wong KY, Sheng DDCV, Nyakuma BB, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(1):109-126.
    PMID: 38040882 DOI: 10.1007/s11356-023-31228-7
    This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.
  8. Senadjki A, Bashir MJK, AuYong HN, Awal IM, Chan JH
    Environ Sci Pollut Res Int, 2024 Jan;31(1):1468-1487.
    PMID: 38041733 DOI: 10.1007/s11356-023-31132-0
    Africa faces significant economic and environmental challenges, including waste generation, food insecurity, and energy inefficiency, jeopardizing future generations. To address this, Africa has adopted the 10-year Sustainable Consumption and Production Framework for Africa (10-YFP), evident through national and local projects focusing on sustainable food and agriculture, technology transfer in water irrigation, and related initiatives. The Belt and Road Initiative (BRI) presents an opportunity for promoting green cooperation and sustainable development in Africa, though its impact on ethical production and consumption remains unexplored. This study evaluates the BRI's role in achieving Africa's Twelve Sustainable Development Goals (SDGs) and catalyzing responsible consumption and production. Through interviews and focus group discussions (FGDs) involving 42 participants from 19 African countries, thematic patterns emerged using the thematic inductive method. Findings indicate that BRI initiatives effectively integrate advanced technologies to enhance sustainable agriculture and industrial production. Notably, BRI investments in countries like Morocco, Algeria, Ethiopia, Kenya, and Zambia are fostering renewable energy projects to provide electricity to underserved communities. A stronger alignment between national sustainable development plans and the green BRI is essential to maximize the benefits without compromising BRI principles of inclusivity, coordination, coherence, and capacity building. This research fosters dialogue among academics, educators, government officials, business leaders, and investors about the transformative potential of China's BRI in African nations. By shedding light on the positive strides made by BRI programs, this study underscores the need for strategic synergy between international cooperation efforts and localized sustainability agendas, ultimately propelling Africa toward its long-term development goals.
  9. Goh KZ, Ahmad AA, Ahmad MA
    Environ Sci Pollut Res Int, 2024 Jan;31(1):1158-1176.
    PMID: 38038911 DOI: 10.1007/s11356-023-31177-1
    This study aimed to assess the dynamic simulation models provided by Aspen adsorption (ASPAD) and artificial neural network (ANN) in understanding the adsorption behavior of atenolol (ATN) on gasified Glyricidia sepium woodchips activated carbon (GGSWAC) within fixed bed columns for wastewater treatment. The findings demonstrated that increasing the bed height from 1 to 3 cm extended breakthrough and exhaustion times while enhancing adsorption capacity. Conversely, higher initial ATN concentrations resulted in shorter breakthrough and exhaustion times but increased adsorption capacity. Elevated influent flow rates reduced breakthrough and exhaustion times while maintaining constant adsorption capacity. The ASPAD software demonstrated competence in accurately modeling the crucial exhaustion points. However, there is room for enhancement in forecasting breakthrough times, as it exhibited deviations ranging from 6.52 to 239.53% when compared to the actual experimental data. ANN models in both MATLAB and Python demonstrated precise predictive abilities, with the Python model (R2 = 0.985) outperforming the MATLAB model (R2 = 0.9691). The Python ANN also exhibited superior fitting performance with lower MSE and MAE. The most influential factor was the initial ATN concentration (28.96%), followed by bed height (26.39%), influent flow rate (22.43%), and total effluent time (22.22%). The findings of this study offer an extensive comprehension of breakthrough patterns and enable accurate forecasts of column performance.
  10. Almaimani G, Jabbar AAJ, Ibrahim IAA, Alzahrani AR, Bamagous GA, Almaimani RA, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):4439-4452.
    PMID: 38103135 DOI: 10.1007/s11356-023-31349-z
    Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.
  11. Chin WS, Chang CH, Say YH, Chuang YN, Wang JN, Kao HC, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):4518-4527.
    PMID: 38102436 DOI: 10.1007/s11356-023-31348-0
    Parabens (PBs) are esters of p-hydroxybenzoic acid, and there are growing concerns due to their potential to disrupt endocrine function and their wide use as preservatives in foodstuffs, including beverages. The consumption of bottled and hand-shaken teas is gradually replacing traditional tea consumption through brewing. However, no study has reported PB concentrations in different types of teas or packaging and their associated health risks. Our aim was to determine the concentration of PBs (methyl- (MetPB), ethyl- (EthPB), propyl- (PropPB), butyl-paraben (ButPB)) in green, black, and oolong teas in two varieties of products (bottled and hand-shaken teas), using UPLC-MS/MS. Additionally, we estimated the health risks associated with tea consumption in the general adult population of Taiwan. A Monte Carlo simulation was applied to estimate the distribution of daily PB intake through bottled (n = 79) and hand-shaken (n = 71) tea consumption. Our findings revealed geometric mean concentrations in bottled green/black/oolong teas were 714.1/631.2/532.1 ng/L for MetPB, 95.2/ 30.5/14.9 ng/L for EthPB, 77.9/28.3/non-detected (ND) ng/L for PropPB, and 69.3/26.6/ND ng/L for ButPB. Hand-shaken green/black/oolong teas exhibited concentrations of 867.5/2258/1307 ng/L for MetPB, 28.5/28.8/14.5 ng/L for EthPB, 25.4/18.3/17.8 ng/L for PropPB, and 30.3/18.0/15.5 ng/L for ButPB. The median MetPB concentrations in hand-shaken black (2333 ng/L) and oolong teas (1215 ng/L) were significantly higher than those in bottled black (595.4 ng/L) and oolong teas (489.3 ng/L). Conversely, median concentrations of EthPB, PropPB, and ButPB in bottled teas were significantly higher than those in hand-shaken teas. MetPB was the predominant PB, constituting 73.2-91.9% in bottled teas and 85-94% in hand-shaken teas. Our results showed no health risks associated with bottled or hand-shaken tea consumption based on reference doses. However, the study highlights the importance of continued vigilance given the potential chronic exposure to PBs from various sources, necessitating ongoing concern despite the absence of immediate risks from tea consumption.
  12. Naggar AH, Dhmees A, Seaf-Elnasr TA, Chong KF, Ali GAM, Ali HM, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):3872-3886.
    PMID: 38093080 DOI: 10.1007/s11356-023-31453-0
    The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.
  13. Zhu H
    Environ Sci Pollut Res Int, 2024 Jan;31(3):3656-3668.
    PMID: 38091214 DOI: 10.1007/s11356-023-30984-w
    From the perspective of sustainable supply chain management (SSCM), this research looks at the key elements influencing how small- and medium-sized companies (SMEs) move toward a circular economy (CE). This research aims to understand the elements that influence SMEs to embrace CE principles and determine the real-world applications of SSCM practices. This research gathered and analyzed data from diverse European SMEs working inside CE networks using a mixed-method approach. We received answers from several of these firms using a survey form sent and emailed to them. The replies were then assessed using an independent t test to account for any biases. We used confirmatory factor analysis (CFA) for the validity assessment, compound consistency, and corrected-item-total association measures to validate the model's validity and reliability. According to our research, SMEs are influenced significantly by societal pressures, green economic incentives, and environmental dedication when deciding whether to adopt CE practices. Our study further emphasizes the importance of SSCM for SMEs' successful transition to a CE model, especially regarding resource and waste management efficiency. This work contributes to the corpus of research on the topic by providing empirical support for the function of SSCM in easing the transition towards CE in the setting of SMEs. The results might serve as a reference for managers and policymakers as they create plans to encourage SMEs to embrace CE practices and to emphasize the advantages of such a change on the economic, social, and environmental fronts. Putting a particular emphasis on the vital roles that public pressure, green financial incentives, and ecological dedication play, this research provides insights into the complex interactions between SSCM and CE transition in SMEs. Further study is needed to examine how these determinants could fluctuate across various industries and geographies.
  14. Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Houmsi MR, Jagun ZT
    PMID: 38151563 DOI: 10.1007/s11356-023-31472-x
    Microbial fuel cells (MFCs) have garnered attention in bio-electrochemical leachate treatment systems. The most common forms of inorganic ammonia nitrogen are ammonium ([Formula: see text]) and free ammonia. Anaerobic digestion can be inhibited in both direct (changes in environmental conditions, such as fluctuations in temperature or pH, can indirectly hinder microbial activity and the efficiency of the digestion process) and indirect (inadequate nutrient levels, or other conditions that indirectly compromise the microbial community's ability to carry out anaerobic digestion effectively) ways by both kinds. The performance of a double-chamber MFC system-composed of an anodic chamber, a cathode chamber with fixed biofilm carriers (carbon felt material), and a Nafion 117 exchange membrane is examined in this work to determine the impact of ammonium nitrogen ([Formula: see text]) inhibition. MFCs may hold up to 100 mL of fluid. Therefore, the bacteria involved were analysed using 16S rRNA. At room temperature, with a concentration of 800 mg L-1 of ammonium nitrogen and 13,225 mg L-1 of chemical oxygen demand (COD), the study produced a considerable power density of 234 mWm-3. It was found that [Formula: see text] concentrations above 800 mg L-1 have an inhibitory influence on power output and treatment effectiveness. Multiple routes removed the most nitrogen ([Formula: see text]-N: 87.11 ± 0.7%, NO2 -N: 93.17 ± 0.2% and TN: 75.24 ± 0.3%). Results from sequencing indicate that the anode is home to a rich microbial community, with anammox (6%), denitrifying (6.4%), and electrogenic bacteria (18.2%) making up the bulk of the population. Microbial fuel cells can efficiently and cost-effectively execute anammox, a green nitrogen removal process, in landfill leachate.
  15. Al Biajawi MI, Abdulrahman MF, Saod WM, Hilal N, Embong R, Sor NH
    PMID: 38146025 DOI: 10.1007/s11356-023-31606-1
    Environmental contamination and the massive high cost of waste disposal have been a huge concern for scholars throughout the globe, prompting them to alternatives of recycling waste materials in various implementation fields. The rising expenditure on disposal and the shortage of naturally main resources such as aggregate have increased interest in reusing recycled waste materials to manufacture concrete and mortar. The annual consumption of a country's population of hundreds of tons of black tea results in considerable numbers of discarded teabags. These huge quantities are disposed in landfills without being recycled or otherwise used. Moreover, such landfills are considered one of the country's biggest global issues. Therefore, the aim of this experimental work is to investigate the influence of nanocarbon tube produced from tea waste as cement replacement materials in mortar mixtures. Cement mortar mixes contain four replacement levels (1%, 2%, 3%, and 4%) of cement with nanocarbon tube produced from tea waste. The compressive strength, ultrasonic pulse velocity, and water absorption were tested to demonstrate the effect of the nanocarbon tube made from recycled tea waste on the mechanical properties of the mortar mix. The fresh properties such as flow rate were evaluated in accordance to specific standards. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX) analyses were performed to demonstrate the microstructure of the mixtures. The results show that the fresh properties (flowability) of mortar containing nanocarbon tubes from tea waste were improved with the increase of the replacement ratio. In addition, the compressive strength was improved by substitution of up to 2%. For the other levels of substitution, it decreased with an increasing replacement percentage. In contrast, the density had increased with the increase of substitution levels of the tea waste. Based on the results of the experiments, it seems that the suggested biomixture could increase the compressive strength of the material by up to 2% of the replacement at 28 days of curing.
  16. Ding Y, Chin L, Taghizadeh-Hesary F, Abdul-Rahim AS, Deng P
    Environ Sci Pollut Res Int, 2023 Dec;30(59):123067-123082.
    PMID: 37979120 DOI: 10.1007/s11356-023-31069-4
    This study utilized panel data from 132 countries spanning from 1996 to 2019 to examine the effect of government efficiency on carbon emission intensity. Using a fixed effect model, the study found that stronger government efficiency is associated with a significant decrease in carbon emission intensity. Robustness tests were performed, the results of which consistently supported the main findings. Additionally, the study investigated the mechanisms underlying the linkage between government efficiency and carbon emission intensity, revealing that improved government efficiency can inhibit carbon emission intensity by fostering environmental innovation and promoting renewable energy consumption. Finally, the study examined the moderating effects of national income level, economic freedom, democracy, and ruling party ideology on the nexus of government efficiency and carbon emission intensity, and found empirical evidence supporting these moderating effects. These results provide new insights for governments seeking to reduce carbon emission intensity.
  17. Raihan A, Voumik LC, Rahman MH, Esquivias MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119117-119133.
    PMID: 37919497 DOI: 10.1007/s11356-023-30552-2
    Addressing global environmental concerns requires the widespread adoption of renewable energy sources. More research is needed to examine the relationships between renewable energy (RE) and globalization, economic growth, and environmental quality in Indonesia. Therefore, we examined how renewable energy usage in Indonesia has changed due to the dynamic effects of globalization, financial development, and environmental quality. Time-series data were analyzed using an autoregressive distributed lag (ARDL) model to test for cointegration and long-run/short-run dynamics between 1990 and 2020. In addition to ARDL bounds testing, we used the Johansen and Engle-Granger cointegration methods for confirmation. Globalization, financial progress, human capital, greenhouse gas emissions, and economic expansion have favorable long- and short-term effects on renewable energy sources. Globalization has enabled Indonesia to expand trade, FDI, and financial investment. It has also increased energy-efficient technology use due to environmental policies. The computed results are robust enough to substitute estimators, such as dynamic ordinary least squares (DOLS), fully modified least squares (FMOLS), and canonical cointegrating regression (CCR). We recommend the implementation of policies that support financial and environmental development by utilizing renewable resources and increasing investments in renewable energy ventures.
  18. Sulaimon AA, Murungi PI, Tackie-Otoo BN, Nwankwo PC, Bustam MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119309-119328.
    PMID: 37924403 DOI: 10.1007/s11356-023-30635-0
    Plant extracts have been shown to effectively inhibit metal corrosion. Using the Box-Behnken design, gravimetric, and electrochemical techniques, analyses were designed to investigate the anti-corrosion potential of okra in a 1M HCl medium. The inhibition performances derived from the various methods were in good agreement, demonstrating that physio-chemisorption was effective and adhered to the Langmuir isotherm model. The efficiency of okra mucilage extract was 96% at a much lower concentration compared to 91.2% and 88.4% for the unsieved extract and gelly-okra filtrate, respectively. FTIR results showed the presence of several functional groups in the okra mucilage extract that are associated with adsorption, and TGA analysis revealed that the extract has high thermal stability. FESEM analysis also supported evidence of adsorption. It was determined that corrosion inhibition by okra mucilage extract was primarily influenced by temperature, followed by extract concentration, with immersion time having the least effect. From the model optimization, it was observed that okra mucilage extract at 200 ppm, 60°C, and 24 h gave an inhibition efficiency of 89.98% and high desirability. These results demonstrate the high capacity of natural okra as an efficient biodegradable corrosion inhibitor.
  19. Kek HY, Tan H, Othman MHD, Nyakuma BB, Goh PS, Wong SL, et al.
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121253-121268.
    PMID: 37979109 DOI: 10.1007/s11356-023-30912-y
    Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.
  20. Fulazzaky MA, Syafiuddin A, Muda K, Martin AY, Yusop Z, Ghani NHA
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121865-121880.
    PMID: 37962755 DOI: 10.1007/s11356-023-30967-x
    This paper reviewed the impacts of climate change on the management of the water sector in Malaysia discussing the current status of water resources, water service, and water-related disasters. The implementation of engineering practices was discussed to provide the detailed assessment of climate change impacts, risks, and adaptation for sustainable development. The narrative methods of reviewing the literatures were used to get an understanding on the engineering practices of water infrastructures, implication of the government policies, and several models as the main motivation behind the concept of integrated water resource management to contribute as part of the sustainable development goals to achieve a better and more sustainable future for all. The findings of this review highlighted the impacts of climate change on the rivers, sea, lakes, dams, and groundwater affecting the availability of water for domestic and industrial water supplies, irrigation, hydropower, and fisheries. The impacts of climate change on the water-related disasters have been indicated affecting drought-flood abrupt alternation and water pollution. Challenges of water management practices facing climate change should be aware of the updated intensity-duration-frequency curves, alternative sources of water, effective water demand management, efficiency of irrigation water, inter-basin water transfer, and nonrevenue water. The transferability of this review findings contribute to an engagement with the society and policy makers to mobilize for climate change adaptation in the water sector.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links