Displaying publications 61 - 80 of 133 in total

Abstract:
Sort:
  1. Macdonald WW, Smith CE, Dawson PS, Ganapathipillai A, Mahadevan S
    J Med Entomol, 1967 May;4(2):146-57.
    PMID: 4383192
  2. Misbah S, Low VL, Mohd Rahim NF, Jaba R, Basari N, Ya'cob Z, et al.
    J Med Entomol, 2022 Feb 18.
    PMID: 35178576 DOI: 10.1093/jme/tjac014
    Aedes albopictus is one of the main mosquito vectors responsible for transmitting arboviruses to humans and animals. The ability of this mosquito to support virus transmission has been linked to vector competence, which is partly attributed to the genetic disparities in Ae. albopictus population. At present, little is known about the biologically important traits of Ae. albopictus in Malaysia. Thus, the study aims to determine the genetic variation of Ae. albopictus based on the mitochondria-encoded sequences of cytochrome oxidase subunit I (COI). A statistical parsimony network of 253 taxa aligned as 321 characters of the COI gene revealed 42 haplotypes (H1-H42), of which H1 was the most widespread haplotype in Peninsular Malaysia. Three highly divergent haplotypes (H21, H30, and H31) were detected from the northern population. Overall, haplotype and nucleotide diversities were 0.576 and 0.003, respectively, with low genetic differentiation (FST = 0.039) and high gene flow (Nm = 12.21) across all populations.
  3. Mogi M, Armbruster PA, Tuno N, Aranda C, Yong HS
    J Med Entomol, 2017 11 07;54(6):1615-1625.
    PMID: 28968769 DOI: 10.1093/jme/tjx156
    We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research.
  4. Mokhtar AS, Braima KA, Peng Chin H, Jeffery J, Mohd Zain SN, Rohela M, et al.
    J Med Entomol, 2016 Apr 25.
    PMID: 27113101 DOI: 10.1093/jme/tjw014
    We report a case of human intestinal myiasis in a 41-yr-old female patient presented at a clinic in Seri Kembangan, Selangor, Malaysia. Larvae passed out in the patient's feces were sent to the Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. DNA barcoding confirmed the second case of intestinal myiasis in Malaysia involving the larvae of Clogmia albipunctatus (Duckhouse) (Diptera: Psychodidae). We review reported cases of myiasis and discuss the present case of intestinal myiasis in an urban patient.
  5. Mokhtar AS, Sridhar GS, Mahmud R, Jeffery J, Lau YL, Wilson JJ, et al.
    J Med Entomol, 2016 Sep 01;53(5):1234-1237.
    PMID: 27208008 DOI: 10.1093/jme/tjw071
    We report an unusual cause of gastrointestinal infection occurring in a 1-year-old infant patient who was brought to a public hospital in Kuala Lumpur, Malaysia. Larvae passed out in the patient's feces were confirmed by DNA barcoding as belonging to the species, Lasioderma serricorne (F.), known as the cigarette beetle. We postulate that the larvae were acquired from contaminated food and were responsible for gastrointestinal symptoms in the patient. To our knowledge, this the first report of human canthariasis caused by larvae of L. serricorne.
  6. Mokhtar AS, Ling Lau Y, Wilson JJ, Abdul-Aziz NM
    J Med Entomol, 2020 05 04;57(3):915-926.
    PMID: 31828310 DOI: 10.1093/jme/tjz234
    Pediculosis capitis caused by Pediculus humanus capitis (De Geer) is endemic all over the world, and children are mostly affected, particularly those living in overcrowded institutions. Several studies have shown that P. h. capitis carried human pathogenic bacteria, suggesting the potential role of head lice in the transmission of pathogens to humans. In this study, we determined the genetic diversity of head lice collected from welfare homes sheltering underprivileged children by using DNA barcoding and demonstrated the presence of Acinetobacter spp., Serratia marcescens, and Staphylococcus aureus in head lice, which have never been investigated before in Malaysia. Cox1 DNA barcoding identified the head lice, P. h. capitis collected from welfare homes across two geographical areas of Peninsular Malaysia as belonging to clades A, B, and D. Acinetobacter bacteria: Acinetobacter guillouiae, Acinetobacter junii, Acinetobacter baumannii, and Acinetobacter nosocomialis were detected in head lice belonging to clades A and also D. In addition, DNA from S. marcescens and S. aureus were also detected in both clades A and D. To our knowledge, this is the first report on the genetic diversity of head lice in Malaysia through DNA barcoding, as well as the first to provide molecular evidence on the type of bacteria occurring in head lice in Malaysia. It is anticipated that the DNA barcoding technique used in this study will be able to provide rapid and accurate identification of arthropods, in particular, medically important ectoparasites.
  7. Myles KM, Pierro DJ, Olson KE
    J Med Entomol, 2004 Jan;41(1):95-106.
    PMID: 14989352
    Within mosquitoes, arboviruses encounter barriers to infection and dissemination that are critical determinants of vector competence. The molecular mechanisms responsible for these barriers have yet to be elucidated. The prototype Sindbis (SIN) strain, AR339, and viruses derived from this strain, such as TR339 virus, have limited infection and transmission potential in the medically important arthropod vector, Aedes aegypti (L.). However, the Malaysian SIN virus strain, MRE16, disseminates in nearly 100% of Ae. aegypti 14 d after oral infection. Here, we compare the spatial and temporal infection patterns of MRE16 and TR339 viruses in Ae. aegypti. The results indicate that a midgut escape barrier is primarily responsible for the significantly lower dissemination and transmission potentials observed after oral infection with TR339 virus. MRE16 and TR339 viruses now represent a well-characterized model system for the further study of virus determinants of vector infection, particularly determinants affecting the midgut escape barrier in Ae. aegypti.
  8. Ong SQ, Ahmad H, Jaal Z, Rus A, Fadzlah FH
    J Med Entomol, 2017 Jan;54(1):24-29.
    PMID: 28082628 DOI: 10.1093/jme/tjw140
    Determining the control threshold for a pest is common prior to initiating a pest control program; however, previous studies related to the house fly control threshold for a poultry farm are insufficient for determining such a threshold. This study aimed to predict the population changes of house fly population by comparing the intrinsic rate of increase (rm) for different house fly densities in a simulated system. This study first defined the knee points of a known population growth curve as a control threshold by comparing the rm of five densities of house flies in a simulated condition. Later, to understand the interactions between the larval and adult populations, the correlation between larval and adult capacity rate (rc) was studied. The rm values of 300- and 500-fly densities were significantly higher compared with the rm values at densities of 50 and 100 flies. This result indicated their representative indices as candidates for a control threshold. The rc of larval and adult populations were negatively correlated with densities of fewer than 300 flies; this implicated adult populations with fewer than 300 flies as declining while the larval population was growing; therefore, control approaches should focus on the immature stages. The results in the present study suggest a control threshold for house fly populations. Future works should focus on calibrating the threshold indices in field conditions.
  9. Ong SQ, Ahmad H, Ab Majid AH, Jaal Z
    J Med Entomol, 2017 11 07;54(6):1626-1632.
    PMID: 28981905 DOI: 10.1093/jme/tjx128
    The potential of integrating the mycoinsecticide, Metarhizium anisopliae (Met.), into house fly control programs is tremendous. However, the interaction between the fungus and insecticide, when applied at poultry farms, remains poorly understood. This study investigated the interaction between M. anisopliae and two selected insecticides, cyromazine and ChCy (a mixture of chlorpyrifos and cypemethrin), with three objectives: to assess the compatibility of M. anisopliae and the insecticides by measuring fungal vegetative growth and conidia production in the presence of insecticides; to evaluate the effect of M. anisopliae on these insecticides by analyzing insecticidal residue using ultra performance liquid chromatography; and to study the synergistic effects of M. anisopliae and the insecticides by applying sublethal concentrations of insecticides with M. anisopliae to house fly larvae. Metarhizium anisopliae was more tolerant to ChCy than to cyromazine, as M. anisopliae showed significantly more growth when grown with this insecticide. The M. anisopliae + ChCy combination resulted in significantly less chlorpyrifos residues compared to the ChCy plate, and 62-72% house fly larva mortality occurred when M. anisopliae and sublethal concentrations of ChCy were combined, implicating synergistic effects of the fungus with low concentrations of ChCy. Integrating M. anisopliae with compatible chemical at right concentration is crucial for poultry farm house fly control programs.
  10. Prakash BK, Low VL, Vinnie-Siow WY, Tan TK, Lim YA, Morvarid AR, et al.
    J Med Entomol, 2018 Aug 29;55(5):1337-1340.
    PMID: 29762747 DOI: 10.1093/jme/tjy072
    Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.
  11. Prakash BK, Low VL, Tan TK, Vinnie-Siow WY, Lim YA, Morvarid AR, et al.
    J Med Entomol, 2018 Aug 29;55(5):1346-1348.
    PMID: 29788335 DOI: 10.1093/jme/tjy081
    Hepatozoon canis has been widely reported in dogs. Its prevalence in ticks, however, has not been well-established. Here we determine the occurrence of Hepatozoon DNA in the brown dog tick Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) sensu lato (s.l.) and domestic dogs from Peninsular Malaysia using a polymerase chain reaction (PCR) assay based on amplification of the 18S ribosomal RNA coding sequence. Our results revealed a relatively low prevalence of H. canis DNA in both R. sanguineus s.l. (0.7%) and dogs (3.33%). This study represents the first report of H. canis DNA in R. sanguineus s.l. in Malaysia, highlighting the risk of this infection in dogs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links