Displaying publications 61 - 80 of 212 in total

Abstract:
Sort:
  1. GBD 2019 Cancer Risk Factors Collaborators
    Lancet, 2022 Aug 20;400(10352):563-591.
    PMID: 35988567 DOI: 10.1016/S0140-6736(22)01438-6
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally.

    METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented.

    FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01-4·94) deaths and 105 million (95·0-116) DALYs for both sexes combined, representing 44·4% (41·3-48·4) of all cancer deaths and 42·0% (39·1-45·6) of all DALYs. There were 2·88 million (2·60-3·18) risk-attributable cancer deaths in males (50·6% [47·8-54·1] of all male cancer deaths) and 1·58 million (1·36-1·84) risk-attributable cancer deaths in females (36·3% [32·5-41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6-28·4) and DALYs by 16·8% (8·8-25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9-42·8] and 33·3% [25·8-42·0]).

    INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden.

    FUNDING: Bill & Melinda Gates Foundation.

  2. GBD 2021 Causes of Death Collaborators
    Lancet, 2024 Apr 03.
    PMID: 38582094 DOI: 10.1016/S0140-6736(24)00367-2
    BACKGROUND: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.

    METHODS: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.

    FINDINGS: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.

    INTERPRETATION: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere.

    FUNDING: Bill & Melinda Gates Foundation.

  3. GBD 2021 Demographics Collaborators
    Lancet, 2024 Mar 08.
    PMID: 38484753 DOI: 10.1016/S0140-6736(24)00476-8
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020-21 COVID-19 pandemic period.

    METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.

    FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5-65·1] decline), and increased during the COVID-19 pandemic period (2020-21; 5·1% [0·9-9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98-5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50-6·01) in 2019. An estimated 131 million (126-137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7-17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8-24·8), from 49·0 years (46·7-51·3) to 71·7 years (70·9-72·5). Global life expectancy at birth declined by 1·6 years (1·0-2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67-8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4-52·7]) and south Asia (26·3% [9·0-44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.

    INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.

    FUNDING: Bill & Melinda Gates Foundation.

  4. GBD 2021 Diabetes Collaborators
    Lancet, 2023 Jul 15;402(10397):203-234.
    PMID: 37356446 DOI: 10.1016/S0140-6736(23)01301-6
    BACKGROUND: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050.

    METHODS: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively.

    FINDINGS: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.

    INTERPRETATION: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.

    FUNDING: Bill & Melinda Gates Foundation.

  5. GBD 2021 Diseases and Injuries Collaborators
    Lancet, 2024 Apr 15.
    PMID: 38642570 DOI: 10.1016/S0140-6736(24)00757-8
    BACKGROUND: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic.

    METHODS: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic.

    FINDINGS: Global DALYs increased from 2·63 billion (95% UI 2·44-2·85) in 2010 to 2·88 billion (2·64-3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7-17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8-6·3) in 2020 and 7·2% (4·7-10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0-234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7-198·3]), neonatal disorders (186·3 million [162·3-214·9]), and stroke (160·4 million [148·0-171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3-51·7) and for diarrhoeal diseases decreased by 47·0% (39·9-52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54-1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5-9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0-19·8]), depressive disorders (16·4% [11·9-21·3]), and diabetes (14·0% [10·0-17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7-27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6-63·6) in 2010 to 62·2 years (59·4-64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6-2·9) between 2019 and 2021.

    INTERPRETATION: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades.

    FUNDING: Bill & Melinda Gates Foundation.

  6. GBD 2021 Fertility and Forecasting Collaborators
    Lancet, 2024 Mar 19.
    PMID: 38521087 DOI: 10.1016/S0140-6736(24)00550-6
    BACKGROUND: Accurate assessments of current and future fertility-including overall trends and changing population age structures across countries and regions-are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.

    METHODS: To estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10-54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values-a metric assessing gain in forecasting accuracy-by comparing predicted versus observed ASFRs from the past 15 years (2007-21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.

    FINDINGS: During the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63-5·06) to 2·23 (2·09-2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137-147), declining to 129 million (121-138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1-canonically considered replacement-level fertility-in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7-29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59-2·08) in 2050 and 1·59 (1·25-1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6-43·1) in 2050 and 54·3% (47·1-59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions-decreasing, for example, in south Asia from 24·8% (23·7-25·8) in 2021 to 16·7% (14·3-19·1) in 2050 and 7·1% (4·4-10·1) in 2100-but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40-1·92) in 2050 and 1·62 (1·35-1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.

    INTERPRETATION: Fertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.

    FUNDING: Bill & Melinda Gates Foundation.

  7. Ginsburg O, Vanderpuye V, Beddoe AM, Bhoo-Pathy N, Bray F, Caduff C, et al.
    Lancet, 2023 Dec 02;402(10417):2113-2166.
    PMID: 37774725 DOI: 10.1016/S0140-6736(23)01701-4
  8. Global Burden of Disease Study 2013 Collaborators
    Lancet, 2015 Aug 22;386(9995):743-800.
    PMID: 26063472 DOI: 10.1016/S0140-6736(15)60692-4
    BACKGROUND: Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.
    METHODS: Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refinements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries.
    FINDINGS: Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2·4 billion and 1·6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537·6 million in 1990 to 764·8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114·87 per 1000 people to 110·31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013.
    INTERPRETATION: Ageing of the world's population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to non-fatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.
    FUNDING: Bill & Melinda Gates Foundation.
    Malaysian collaborators: Department of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lampur, Malaysia (Prof N Mohamed Ibrahim MBBch); Universiti Kebangsaan Malaysia Medical Centre, Bangi, Selangor, Malaysia (R Sahathevan PhD); Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Selangor, Malaysia (C T Sreeramareddy MD); WorldFish, Penang, Malaysia (A L Thorne-Lyman ScD); TCM Medical TK SDN BHD TCM, Nusajaya, Johor Bahru, Malaysia (K Yun Kin PhD)
  9. Goh AY, Lum LC, Abdel-Latif ME
    Lancet, 2001 Feb 10;357(9254):445-6.
    PMID: 11273070
    The 24 h availability of intensive care consultants (intensivists) has been shown to improve outcomes in adult intensive care units (ICU) in the UK. We tested whether such availability would improve standardised mortality ratios when compared to out-of-hours cover by general paediatricians in the paediatric ICU setting of a medium-income developing country. The standardised mortality ratio (SMR) improved significantly from 1.57 (95%CI 1.25-1.95) with non-specialist care to 0.88 (95%CI 0.63-1.19) with intensivist care (rate ratio 0.56, 95% CI 0.47-0.67). Mortality odds ratio decreased by 0.234, 0.246 and 0.266 in the low, moderate and high-risk patients. 24 h availability of intensivists was associated with improved outcomes and use of resources in paediatric intensive care in a developing country.
  10. Gostin LO, Klock KA, Clark H, Diop FZ, Jayasuriya D, Mahmood J, et al.
    Lancet, 2022 Apr 16;399(10334):1445-1447.
    PMID: 35338858 DOI: 10.1016/S0140-6736(22)00533-5
  11. Gregg EW, Buckley J, Ali MK, Davies J, Flood D, Mehta R, et al.
    Lancet, 2023 Apr 15;401(10384):1302-1312.
    PMID: 36931289 DOI: 10.1016/S0140-6736(23)00001-6
    The Global Diabetes Compact is a WHO-driven initiative uniting stakeholders around goals of reducing diabetes risk and ensuring that people with diabetes have equitable access to comprehensive, affordable care and prevention. In this report we describe the development and scientific basis for key health metrics, coverage, and treatment targets accompanying the Compact. We considered metrics across four domains: factors at a structural, system, or policy level; processes of care; behaviours and biomarkers such as glycated haemoglobin (HbA1c); and health events and outcomes; and three risk tiers (diagnosed diabetes, high risk, or whole population), and reviewed and prioritised them according to their health importance, modifiability, data availability, and global inequality. We reviewed the global distribution of each metric to set targets for future attainment. This process led to five core national metrics and target levels for UN member states: (1) of all people with diabetes, at least 80% have been clinically diagnosed; and, for people with diagnosed diabetes, (2) 80% have HbA1c concentrations below 8·0% (63·9 mmol/mol); (3) 80% have blood pressure lower than 140/90 mm Hg; (4) at least 60% of people 40 years or older are receiving therapy with statins; and (5) each person with type 1 diabetes has continuous access to insulin, blood glucose meters, and test strips. We also propose several complementary metrics that currently have limited global coverage, but warrant scale-up in population-based surveillance systems. These include estimation of cause-specific mortality, and incidence of end-stage kidney disease, lower-extremity amputations, and incidence of diabetes. Primary prevention of diabetes and integrated care to prevent long-term complications remain important areas for the development of new metrics and targets. These metrics and targets are intended to drive multisectoral action applied to individuals, health systems, policies, and national health-care access to achieve the goals of the Global Diabetes Compact. Although ambitious, their achievement can result in broad health benefits for people with diabetes.
  12. Hamid M, Bustamante-Manaog T, Truong VD, Akkhavong K, Fu H, Ma Y, et al.
    Lancet, 2005 Nov 19;366(9499):1758-60.
    PMID: 16298204 DOI: 10.1016/S0140-6736(05)67709-4
  13. Hanbali L, Lehtimaki S, Hannon E, McNab C, Schwalbe N
    Lancet, 2023 Feb 18;401(10376):553.
    PMID: 36736333 DOI: 10.1016/S0140-6736(23)00126-5
  14. Hawkes S, Allotey P, Elhadj AS, Clark J, Horton R
    Lancet, 2020 08 22;396(10250):521-522.
    PMID: 32763153 DOI: 10.1016/S0140-6736(20)31547-6
  15. Heyland DK, Patel J, Compher C, Rice TW, Bear DE, Lee ZY, et al.
    Lancet, 2023 Feb 18;401(10376):568-576.
    PMID: 36708732 DOI: 10.1016/S0140-6736(22)02469-2
    BACKGROUND: On the basis of low-quality evidence, international critical care nutrition guidelines recommend a wide range of protein doses. The effect of delivering high-dose protein during critical illness is unknown. We aimed to test the hypothesis that a higher dose of protein provided to critically ill patients would improve their clinical outcomes.

    METHODS: This international, investigator-initiated, pragmatic, registry-based, single-blinded, randomised trial was undertaken in 85 intensive care units (ICUs) across 16 countries. We enrolled nutritionally high-risk adults (≥18 years) undergoing mechanical ventilation to compare prescribing high-dose protein (≥2·2 g/kg per day) with usual dose protein (≤1·2 g/kg per day) started within 96 h of ICU admission and continued for up to 28 days or death or transition to oral feeding. Participants were randomly allocated (1:1) to high-dose protein or usual dose protein, stratified by site. As site personnel were involved in both prescribing and delivering protein dose, it was not possible to blind clinicians, but patients were not made aware of the treatment assignment. The primary efficacy outcome was time-to-discharge-alive from hospital up to 60 days after ICU admission and the secondary outcome was 60-day morality. Patients were analysed in the group to which they were randomly assigned regardless of study compliance, although patients who dropped out of the study before receiving the study intervention were excluded. This study is registered with ClinicalTrials.gov, NCT03160547.

    FINDINGS: Between Jan 17, 2018, and Dec 3, 2021, 1329 patients were randomised and 1301 (97·9%) were included in the analysis (645 in the high-dose protein group and 656 in usual dose group). By 60 days after randomisation, the cumulative incidence of alive hospital discharge was 46·1% (95 CI 42·0%-50·1%) in the high-dose compared with 50·2% (46·0%-54·3%) in the usual dose protein group (hazard ratio 0·91, 95% CI 0·77-1·07; p=0·27). The 60-day mortality rate was 34·6% (222 of 642) in the high dose protein group compared with 32·1% (208 of 648) in the usual dose protein group (relative risk 1·08, 95% CI 0·92-1·26). There appeared to be a subgroup effect with higher protein provision being particularly harmful in patients with acute kidney injury and higher organ failure scores at baseline.

    INTERPRETATION: Delivery of higher doses of protein to mechanically ventilated critically ill patients did not improve the time-to-discharge-alive from hospital and might have worsened outcomes for patients with acute kidney injury and high organ failure scores.

    FUNDING: None.

  16. Hickey M, Basu P, Sassarini J, Stegmann ME, Weiderpass E, Nakawala Chilowa K, et al.
    Lancet, 2024 Mar 09;403(10430):984-996.
    PMID: 38458217 DOI: 10.1016/S0140-6736(23)02802-7
    Globally, 9 million women are diagnosed with cancer each year. Breast cancer is the most commonly diagnosed cancer worldwide, followed by colorectal cancer in high-income countries and cervical cancer in low-income countries. Survival from cancer is improving and more women are experiencing long-term effects of cancer treatment, such as premature ovarian insufficiency or early menopause. Managing menopausal symptoms after cancer can be challenging, and more severe than at natural menopause. Menopausal symptoms can extend beyond hot flushes and night sweats (vasomotor symptoms). Treatment-induced symptoms might include sexual dysfunction and impairment of sleep, mood, and quality of life. In the long term, premature ovarian insufficiency might increase the risk of chronic conditions such as osteoporosis and cardiovascular disease. Diagnosing menopause after cancer can be challenging as menopausal symptoms can overlap with other common symptoms in patients with cancer, such as fatigue and sexual dysfunction. Menopausal hormone therapy is an effective treatment for vasomotor symptoms and seems to be safe for many patients with cancer. When hormone therapy is contraindicated or avoided, emerging evidence supports the efficacy of non-pharmacological and non-hormonal treatments, although most evidence is based on women older than 50 years with breast cancer. Vaginal oestrogen seems safe for most patients with genitourinary symptoms, but there are few non-hormonal options. Many patients have inadequate centralised care for managing menopausal symptoms after cancer treatment, and more information is needed about cost-effective and patient-focused models of care for this growing population.
  17. Horton S, Sullivan R, Flanigan J, Fleming KA, Kuti MA, Looi LM, et al.
    Lancet, 2018 05 12;391(10133):1953-1964.
    PMID: 29550030 DOI: 10.1016/S0140-6736(18)30460-4
    Modern, affordable pathology and laboratory medicine (PALM) systems are essential to achieve the 2030 Sustainable Development Goals for health in low-income and middle-income countries (LMICs). In this last in a Series of three papers about PALM in LMICs, we discuss the policy environment and emphasise three crucial high-level actions that are needed to deliver universal health coverage. First, nations need national strategic laboratory plans; second, these plans require adequate financing for implementation; and last, pathologists themselves need to take on leadership roles to advocate for the centrality of PALM to achieve the Sustainable Development Goals for health. The national strategic laboratory plan should deliver a tiered, networked laboratory system as a central element. Appropriate financing should be provided, at a level of at least 4% of health expenditure. Financing of new technologies such as molecular diagnostics is challenging for LMICs, even though many of these tests are cost-effective. Point-of-care testing can substantially reduce test-reporting time, but this benefit must be balanced with higher costs. Our research analysis highlights a considerable deficiency in advocacy for PALM; pathologists have been invisible in national and international health discourse and leadership. Embedding PALM in LMICs can only be achieved if pathologists advocate for these services, and undertake leadership roles, both nationally and internationally. We articulate eight key recommendations to address the current barriers identified in this Series and issue a call to action for all stakeholders to come together in a global alliance to ensure the effective provision of PALM services in resource-limited settings.
  18. Howard C, Moineau G, Poitras J, Redvers N, Mahmood J, Eissa M, et al.
    Lancet, 2023 Dec 09;402(10418):2173-2176.
    PMID: 38000382 DOI: 10.1016/S0140-6736(23)02526-6
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links