Displaying publications 61 - 80 of 173 in total

Abstract:
Sort:
  1. Lim JT, Dickens BSL, Chew LZX, Choo ELW, Koo JR, Aik J, et al.
    PLoS Negl Trop Dis, 2020 10;14(10):e0008719.
    PMID: 33119609 DOI: 10.1371/journal.pntd.0008719
    An estimated 105 million dengue infections occur per year across 120 countries, where traditional vector control is the primary control strategy to reduce contact between mosquito vectors and people. The ongoing sars-cov-2 pandemic has resulted in dramatic reductions in human mobility due to social distancing measures; the effects on vector-borne illnesses are not known. Here we examine the pre and post differences of dengue case counts in Malaysia, Singapore and Thailand, and estimate the effects of social distancing as a treatment effect whilst adjusting for temporal confounders. We found that social distancing is expected to lead to 4.32 additional cases per 100,000 individuals in Thailand per month, which equates to 170 more cases per month in the Bangkok province (95% CI: 100-242) and 2008 cases in the country as a whole (95% CI: 1170-2846). Social distancing policy estimates for Thailand were also found to be robust to model misspecification, and variable addition and omission. Conversely, no significant impact on dengue transmission was found in Singapore or Malaysia. Across country disparities in social distancing policy effects on reported dengue cases are reasoned to be driven by differences in workplace-residence structure, with an increase in transmission risk of arboviruses from social distancing primarily through heightened exposure to vectors in elevated time spent at residences, demonstrating the need to understand the effects of location on dengue transmission risk under novel population mixing conditions such as those under social distancing policies.
  2. Albert MJ, Bulach D, Alfouzan W, Izumiya H, Carter G, Alobaid K, et al.
    PLoS Negl Trop Dis, 2019 04;13(4):e0007293.
    PMID: 30986214 DOI: 10.1371/journal.pntd.0007293
    Non-typhoidal Salmonella (NTS) bacteremia is a significant cause of morbidity and mortality worldwide. It is considered to be an emerging and neglected tropical disease in Africa. We studied this in two tertiary hospitals-Al Farwaniya and Al Amiri-in Kuwait, a subtropical country, from April 2013-May 2016. NTS bacteremia was present in 30 of 53,860 (0.75%) and 31 of 290,36 (1.33%) blood cultures in the two hospitals respectively. In Al Farwaniya hospital, one-third of the patients were from some tropical developing countries of Asia. About 66% of all patients (40/61) had diarrhea, and of these, 65% had the corresponding blood serovar isolated from stool culture. A few patients had Salmonella cultured from urine. Patients were either young or old. Most of the patients had co-morbidities affecting the immune system. Two patients each died in both hospitals. The number of different serovars cultured in each hospital was 13, and most infections were due to S. Enteritidis (all sequence type [ST]) 11) and S. Typhimurium (all ST19) except in a subgroup of expatriate patients from tropical developing countries in Al Farwaniya hospital. About a quarter of the isolates were multidrug-resistant. Most patients were treated with a cephalosporin with or without other antibiotics. S. Enteritidis and S. Typhimurium isolates were typed by pulsed field-gel electrophoresis (PFGE) and a selected number of isolates were whole-genome sequenced. Up to four different clades were present by PFGE in either species. Whole-genome sequenced isolates showed antibiotic-resistance genes that showed phenotypic correlation, and in some cases, phenotypes showed absence of specific genes. Whole-genome sequenced isolates showed presence of genes that contributed to blood-stream infection. Phylogeny by core genome analysis showed a close relationship with S. Typhimurium and S. Enteritidis from other parts of the world. The uniqueness of our study included the finding of a low prevalence of infection, mortality and multidrug-resistance, a relatively high prevalence of gastrointestinal infection in patients, and the characterization of selected isolates of S. Typhimurium and S. Enteritidis serovars by whole-genome sequencing that shed light on phylogeny, virulence and resistance. Similarities with studies from developing countries especially Africa included infection in patients with co-morbidities affecting the immune system, predominance of S. Typhimurium and S. Enteritidis serovars and presence of drug-resistance in isolates.
  3. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
  4. Arushothy R, Amran F, Samsuddin N, Ahmad N, Nathan S
    PLoS Negl Trop Dis, 2020 12;14(12):e0008979.
    PMID: 33370273 DOI: 10.1371/journal.pntd.0008979
    BACKGROUND: Melioidosis is a neglected tropical disease with rising global public health and clinical importance. Melioidosis is endemic in Southeast Asia and Northern Australia and is of increasing concern in Malaysia. Despite a number of reported studies from Malaysia, these reports are limited to certain parts of the country and do not provide a cohesive link between epidemiology of melioidosis cases and the nation-wide distribution of the causative agent Burkholderia pseudomallei.

    METHODOLOGY/PRINCIPLE FINDINGS: Here we report on the distribution of B. pseudomallei sequence types (STs) in Malaysia and how the STs are related to STs globally. We obtained 84 culture-confirmed B. pseudomallei from confirmed septicaemic melioidosis patients from all over Malaysia. Prior to performing Multi Locus Sequence Typing, the isolates were subjected to antimicrobial susceptibility testing and detection of the YLF/BTFC genes and BimA allele. Up to 90.5% of the isolates were sensitive to all antimicrobials tested while resistance was observed for antimicrobials typically administered during the eradication stage of treatment. YLF gene cluster and bimABp allele variant were detected in all the isolates. The epidemiological distribution patterns of the Malaysian B. pseudomallei isolates were analysed in silico using phylogenetic tools and compared to Southeast Asian and world-wide isolates. Genotyping of the 84 Malaysian B. pseudomallei isolates revealed 29 different STs of which 6 (7.1%) were novel. ST50 was identified as the group founder followed by subgroup founders ST376, ST211 and ST84. A low-level diversity is noted for the B. pseudomallei isolates described in this study while phylogenetic analysis associated the Malaysian STs to Southeast Asian isolates especially isolates from Thailand. Further analysis also showed a strong association that implicates agriculture and domestication activities as high-risk routes of infection.

    CONCLUSIONS/SIGNIFICANCE: In conclusion, MLST analysis of B. pseudomallei clinical isolates from all states in Malaysia revealed low diversity and a close association to Southeast Asian isolates.

  5. Rayanakorn A, Ademi Z, Liew D, Lee LH
    PLoS Negl Trop Dis, 2021 01;15(1):e0008985.
    PMID: 33481785 DOI: 10.1371/journal.pntd.0008985
    BACKGROUND: Streptoccocus suis (S.suis) infection is a neglected zoonosis disease in humans mainly affects men of working age. We estimated the health and economic burden of S.suis infection in Thailand in terms of years of life lost, quality-adjusted life years (QALYs) lost, and productivity-adjusted life years (PALYs) lost which is a novel measure that adjusts years of life lived for productivity loss attributable to disease.

    METHODS: A decision-analytic Markov model was developed to simulate the impact of S. suis infection and its major complications: death, meningitis and infective endocarditis among Thai people in 2019 with starting age of 51 years. Transition probabilities, and inputs pertaining to costs, utilities and productivity impairment associated with long-term complications were derived from published sources. A lifetime time horizon with follow-up until death or age 100 years was adopted. The simulation was repeated assuming that the cohort had not been infected with S.suis. The differences between the two set of model outputs in years of life, QALYs, and PALYs lived reflected the impact of S.suis infection. An annual discount rate of 3% was applied to both costs and outcomes. One-way sensitivity analyses and Monte Carlo simulation modeling technique using 10,000 iterations were performed to assess the impact of uncertainty in the model.

    KEY RESULTS: This cohort incurred 769 (95% uncertainty interval [UI]: 695 to 841) years of life lost (14% of predicted years of life lived if infection had not occurred), 826 (95% UI: 588 to 1,098) QALYs lost (21%) and 793 (95%UI: 717 to 867) PALYs (15%) lost. These equated to an average of 2.46 years of life, 2.64 QALYs and 2.54 PALYs lost per person. The loss in PALYs was associated with a loss of 346 (95% UI: 240 to 461) million Thai baht (US$11.3 million) in GDP, which equated to 1.1 million Thai baht (US$ 36,033) lost per person.

    CONCLUSIONS: S.suis infection imposes a significant economic burden both in terms of health and productivity. Further research to investigate the effectiveness of public health awareness programs and disease control interventions should be mandated to provide a clearer picture for decision making in public health strategies and resource allocations.

  6. Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G
    PLoS Negl Trop Dis, 2021 01;15(1):e0008351.
    PMID: 33481791 DOI: 10.1371/journal.pntd.0008351
    The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus.
  7. Britton S, Cheng Q, Grigg MJ, Poole CB, Pasay C, William T, et al.
    PLoS Negl Trop Dis, 2016 Feb;10(2):e0004443.
    PMID: 26870958 DOI: 10.1371/journal.pntd.0004443
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority.

    METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

    RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105).

    CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.

  8. Ngim CF, Husain SMT, Hassan SS, Dhanoa A, Ahmad SAA, Mariapun J, et al.
    PLoS Negl Trop Dis, 2021 05;15(5):e0009445.
    PMID: 34014983 DOI: 10.1371/journal.pntd.0009445
    BACKGROUND: Dengue fever is the most common mosquito-borne infection worldwide where an expanding surveillance and characterization of this infection are needed to better inform the healthcare system. In this surveillance-based study, we explored the prevalence and distinguishing features of dengue fever amongst febrile patients in a large community-based health facility in southern peninsular Malaysia.

    METHODS: Over six months in 2018, we recruited 368 adults who met the WHO 2009 criteria for probable dengue infection. They underwent the following blood tests: full blood count, dengue virus (DENV) rapid diagnostic test (RDT), ELISA (dengue IgM and IgG), nested RT-PCR for dengue, multiplex qRT-PCR for Zika, Chikungunya and dengue as well as PCR tests for Leptopspira spp., Japanese encephalitis and West Nile virus.

    RESULTS: Laboratory-confirmed dengue infections (defined by positive tests in NS1, IgM, high-titre IgG or nested RT-PCR) were found in 167 (45.4%) patients. Of these 167 dengue patients, only 104 (62.3%) were positive on rapid diagnostic testing. Dengue infection was significantly associated with the following features: family or neighbours with dengue in the past week (AOR: 3.59, 95% CI:2.14-6.00, p<0.001), cutaneous rash (AOR: 3.58, 95% CI:1.77-7.23, p<0.001), increased temperature (AOR: 1.33, 95% CI:1.04-1.70, p = 0.021), leucopenia (white cell count < 4,000/μL) (AOR: 3.44, 95% CI:1.72-6.89, p<0.001) and thrombocytopenia (platelet count <150,000/μL)(AOR: 4.63, 95% CI:2.33-9.21, p<0.001). Dengue infection was negatively associated with runny nose (AOR: 0.47, 95% CI:0.29-0.78, p = 0.003) and arthralgia (AOR: 0.42, 95% CI:0.24-0.75, p = 0.004). Serotyping by nested RT-PCR revealed mostly mono-infections with DENV-2 (n = 64), DENV-1 (n = 32) and DENV-3 (n = 17); 14 co-infections occurred with DENV-1/DENV-2 (n = 13) and DENV-1/DENV-4 (n = 1). Besides dengue, none of the pathogens above were found in patients' serum.

    CONCLUSIONS: Acute undifferentiated febrile infections are a diagnostic challenge for community-based clinicians. Rapid diagnostic tests are increasingly used to diagnose dengue infection but negative tests should be interpreted with caution as they fail to detect a considerable proportion of dengue infection. Certain clinical features and haematological parameters are important in the clinical diagnosis of dengue infection.

  9. Naserrudin NA, Abdul Aziz EI, Aljet E, Mangunji G, Tojo B, Jeffree MS, et al.
    PLoS Negl Trop Dis, 2021 06;15(6):e0009450.
    PMID: 34081725 DOI: 10.1371/journal.pntd.0009450
    An outbreak of Plasmodium malariae occurred in Sonsogon Paliu village in the remote area of Ulu Bengkoka sub-district of Kota Marudu, Northern Sabah, Malaysian Borneo from July through August 2019. This was the first outbreak of malaria in this village since 2014. On 11th July 2019 the Kota Kinabalu Public Health Laboratory notified the Kota Marudu District Health Office of a Polymerase Chain Reaction (PCR) positive case of P. malariae. This index case was a male from Sulawesi, Indonesia working for a logging company operating in Sonsogon Paliu. During the resulting outbreak, a total of 14 symptomatic cases were detected. All of these cases were positive by thick and thin blood smear examination, and also by PCR. During the outbreak, a mass blood survey screening was performed by light-microscopy and PCR. A total of 94 asymptomatic villagers 31 (33.0%) were PCR positive but thick and thin blood smear negative for P. malariae. Both symptomatic and asymptomatic cases received treatment at the district hospital. When symptomatic and asymptomatic cases were considered together, males (29/45. 64.5%) were infected more than females (16/45, 35.6%), the male:female ratio being 1.8:1. Adults were the predominant age group infected (22/45, 48.9%) followed by adolescents (19/45, 42.2%) and children under five years of age (4/45, 8.9%). This report illustrates that symptomatic and submicroscopic cases pose a challenge during P. malariae outbreaks and that PCR is a valuable tool for their identification. The rapid identification and control of imported malaria is crucial for the continued control of malaria in Malaysia.
  10. Vellasamy KM, Mariappan V, Shankar EM, Vadivelu J
    PLoS Negl Trop Dis, 2016 07;10(7):e0004730.
    PMID: 27367858 DOI: 10.1371/journal.pntd.0004730
    BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.

    METHODS: We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS).

    RESULTS: We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages.

    CONCLUSION: Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

  11. Setha T, Chantha N, Benjamin S, Socheat D
    PLoS Negl Trop Dis, 2016 09;10(9):e0004973.
    PMID: 27627758 DOI: 10.1371/journal.pntd.0004973
    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province.
  12. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

  13. Manin BO, Ferguson HM, Vythilingam I, Fornace K, William T, Torr SJ, et al.
    PLoS Negl Trop Dis, 2016 Oct;10(10):e0005064.
    PMID: 27741235 DOI: 10.1371/journal.pntd.0005064
    In recent years, the primate malaria Plasmodium knowlesi has emerged in human populations throughout South East Asia, with the largest hotspot being in Sabah, Malaysian Borneo. Control efforts are hindered by limited knowledge of where and when people get exposed to mosquito vectors. It is assumed that exposure occurs primarily when people are working in forest areas, but the role of other potential exposure routes (including domestic or peri-domestic transmission) has not been thoroughly investigated.
  14. Cong Y, Lentz MR, Lara A, Alexander I, Bartos C, Bohannon JK, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005532.
    PMID: 28388650 DOI: 10.1371/journal.pntd.0005532
    Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.
  15. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

  16. Mohan A, Podin Y, Tai N, Chieng CH, Rigas V, Machunter B, et al.
    PLoS Negl Trop Dis, 2017 Jun;11(6):e0005650.
    PMID: 28599008 DOI: 10.1371/journal.pntd.0005650
    BACKGROUND: Melioidosis is a serious, and potentially fatal community-acquired infection endemic to northern Australia and Southeast Asia, including Sarawak, Malaysia. The disease, caused by the usually intrinsically aminoglycoside-resistant Burkholderia pseudomallei, most commonly affects adults with predisposing risk factors. There are limited data on pediatric melioidosis in Sarawak.

    METHODS: A part prospective, part retrospective study of children aged <15 years with culture-confirmed melioidosis was conducted in the 3 major public hospitals in Central Sarawak between 2009 and 2014. We examined epidemiological, clinical and microbiological characteristics.

    FINDINGS: Forty-two patients were recruited during the 6-year study period. The overall annual incidence was estimated to be 4.1 per 100,000 children <15 years, with marked variation between districts. No children had pre-existing medical conditions. Twenty-three (55%) had disseminated disease, 10 (43%) of whom died. The commonest site of infection was the lungs, which occurred in 21 (50%) children. Other important sites of infection included lymph nodes, spleen, joints and lacrimal glands. Seven (17%) children had bacteremia with no overt focus of infection. Delays in diagnosis and in melioidosis-appropriate antibiotic treatment were observed in nearly 90% of children. Of the clinical isolates tested, 35/36 (97%) were susceptible to gentamicin. Of these, all 11 isolates that were genotyped were of a single multi-locus sequence type, ST881, and possessed the putative B. pseudomallei virulence determinants bimABp, fhaB3, and the YLF gene cluster.

    CONCLUSIONS: Central Sarawak has a very high incidence of pediatric melioidosis, caused predominantly by gentamicin-susceptible B. pseudomallei strains. Children frequently presented with disseminated disease and had an alarmingly high death rate, despite the absence of any apparent predisposing risk factor.

  17. Lim JA, Ismail Z, Ibrahim CN, Chong SE, Wan Abdullah WNH
    PLoS Negl Trop Dis, 2017 06;11(6):e0005543.
    PMID: 28617806 DOI: 10.1371/journal.pntd.0005543
  18. Kingsley PV, Leader M, Nagodawithana NS, Tipre M, Sathiakumar N
    PLoS Negl Trop Dis, 2016 12;10(12):e0005182.
    PMID: 28005910 DOI: 10.1371/journal.pntd.0005182
    BACKGROUND: Melioidosis is a tropical infectious disease associated with significant mortality due to early onset of sepsis.

    OBJECTIVE: We sought to review case reports of melioidosis from Malaysia.

    METHODS: We conducted a computerized search of literature resources including PubMed, OVID, Scopus, MEDLINE and the COCHRANE database to identify published case reports from 1975 to 2015. We abstracted information on clinical characteristics, exposure history, comorbid conditions, management and outcome.

    RESULTS: Overall, 67 cases were reported with 29 (43%) deaths; the median age was 44 years, and a male preponderance (84%) was noted. Forty-one cases (61%) were bacteremic, and fatal septic shock occurred in 13 (19%) within 24-48 hours of admission; nine of the 13 cases were not specifically treated for melioidosis as confirmatory evidence was available only after death. Diabetes mellitus (n = 36, 54%) was the most common risk factor. Twenty-six cases (39%) had a history of exposure to contaminated soil/water or employment in high-risk occupations. Pneumonia (n = 24, 36%) was the most common primary clinical presentation followed by soft tissue abscess (n = 22, 33%). Other types of clinical presentations were less common-genitourinary (n = 5), neurological (n = 5), osteomyelitis/septic arthritis (n = 4) and skin (n = 2); five cases had no evidence of a focus of infection. With regard to internal foci of infection, abscesses of the subcutaneous tissue (n = 14, 21%) was the most common followed by liver (18%); abscesses of the spleen and lung were the third most common (12% each). Seven of 56 males were reported to have prostatic abscesses. Mycotic pseudoaneurysm occurred in five cases. Only one case of parotid abscess was reported in an adult. Of the 67 cases, 13 were children (≤ 18 years of age) with seven deaths; five of the 13 were neonates presenting primarily with bronchopneumonia, four of whom died. Older children had a similar presentation as adults; no case of parotid abscess was reported among children.

    CONCLUSIONS: The clinical patterns of cases reported from Malaysia are consistent for the most part from previous case reports from South and Southeast Asia with regard to common primary presentations of pneumonia and soft tissue abscesses, and diabetes as a major risk factor. Bacteremic melioidosis carried a poor prognosis and septic shock was strong predictor of mortality. Differences included the occurrence of: primary neurological infection was higher in Malaysia compared to reports outside Malaysia; internal foci of infection such as abscesses of the liver, spleen, prostate, and mycotic pseudoaneurysms were higher than previously reported in the region. No parotid abscess was reported among children. Early recognition of the disease is the cornerstone of management. In clinical situations of community-acquired sepsis and/or pneumonia, where laboratory bacteriological confirmation is not possible, empirical treatment with antimicrobials for B. pseudomallei is recommended.

  19. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
  20. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P
    PLoS Negl Trop Dis, 2017 Jun;11(6):e0005701.
    PMID: 28640895 DOI: 10.1371/journal.pntd.0005701
    Dengue is a fast spreading mosquito-borne disease that affects more than half of the population worldwide. An unprecedented outbreak happened in Guangzhou, China in 2014, which contributed 52 percent of all dengue cases that occurred in mainland China between 1990 and 2015. Our previous analysis, based on a deterministic model, concluded that the early timing of the first imported case that triggered local transmission and the excessive rainfall thereafter were the most important determinants of the large final epidemic size in 2014. However, the deterministic model did not allow us to explore the driving force of the early local transmission. Here, we expand the model to include stochastic elements and calculate the successful invasion rate of cases that entered Guangzhou at different times under different climate and intervention scenarios. The conclusion is that the higher number of imported cases in May and June was responsible for the early outbreak instead of climate. Although the excessive rainfall in 2014 did increase the success rate, this effect was offset by the low initial water level caused by interventions in late 2013. The success rate is strongly dependent on mosquito abundance during the recovery period of the imported case, since the first step of a successful invasion is infecting at least one local mosquito. The average final epidemic size of successful invasion decreases exponentially with introduction time, which means if an imported case in early summer initiates the infection process, the final number infected can be extremely large. Therefore, dengue outbreaks occurring in Thailand, Singapore, Malaysia and Vietnam in early summer merit greater attention, since the travel volumes between Guangzhou and these countries are large. As the climate changes, destroying mosquito breeding sites in Guangzhou can mitigate the detrimental effects of the probable increase in rainfall in spring and summer.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links