Displaying publications 61 - 80 of 136 in total

Abstract:
Sort:
  1. Ismail SI, Ahmad Dahlan K, Abdullah S, Zulperi D
    Plant Dis, 2020 Aug 04.
    PMID: 32748717 DOI: 10.1094/PDIS-06-20-1267-PDN
    Guava (Psidium guajava L.) is an economically important fruit crop in Malaysia with annual production of 67,087 tons in 2018 (FAO 2018). In February 2019, fruit rot symptoms were observed postharvest on approximately 30% of guava cv. Lohan collected from a commercial orchard in the Rawang district (3°23'22.8"N 101°26'55.7"E) of Selangor province, Malaysia. Symptoms on the fruits appeared as small, circular brown spots (ranging 5 to 20 mm in diameter) that coalesced and rapidly expanded to cover the entire fruit. Severely infected fruits became soft and rotted. Ten diseased guava fruits were collected from the sampling location. Small pieces (5x5x5 mm) of symptomatic fruit tissues were excised from the lesion margin, surface-sterilized with 0.5% sodium hypochlorite (NaOCl) for 1 min, rinsed twice with sterile distilled water, plated on potato dextrose agar (PDA) and incubated at 25 °C for 5 days. A Scytalidium-like fungus was consistently isolated from symptomatic tissues on PDA after 4 days. For morphological identification, single-spore cultures were grown on PDA at 25 °C and a representative isolate LB1 was characterized further. The fungal colonies were initially white, powdery, and later turned grayish-black with the onset of sporulation. The mycelia were branched with septa, pigmented, and brown in color. Fungal colonies produced dark-brown arthroconidia with thick-walled, 0 to 1-septa, averaged 9 μm x 5 μm (n=20), and cylindrical to oblong in shape. For molecular identification, genomic DNA was extracted from fresh mycelium of isolate LB1 using DNeasy Plant Mini kit (Qiagen, Germantown, MD, USA). The internal transcribed spacer (ITS) region of rDNA and translation elongation factor 1-alpha (TEF1-α) gene were amplified using ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1-986R primer set (Carbone and Kohn 1999), respectively. Both ITS (954 bp) and TEF1-α (412 bp) sequences exhibited 100% identity to Neoscytalidium dimidiatum with GenBank accession numbers FM211432 and MK495414, respectively. The resulting sequences were deposited in GenBank (ITS: Accession no. MT565490; TEF1-α Accession no. MT572846). Based on the morphological and molecular data, the pathogen was identified as N. dimidiatum (Penz.) Crous & Slippers (Crous et al. 2006). A pathogenicity test was conducted on 5 healthy detached mature guava fruits cv. Lohan by wound-inoculating using a sterile needle and pipetting 10-µl of a conidial suspension (1 × 106 conidia/ml) of isolate LB1 to the wound. Five additional fruits were wounded and pipetted 10-µl sterile distilled water to serve as controls. Inoculated fruits were placed in sterilized plastic container and incubated at 25 ± 1 °C, 90% relative humidity with a photoperiod of 12 h, and the experiment was conducted twice. All inoculated fruits developed symptoms as described above 4 to 7 days post-inoculation, while the control fruits remained asymptomatic. N. dimidiatum was re-isolated from all symptomatic tissues confirming Koch's postulates. N. dimidiatum has been reported causing brown spot disease on pitaya (Lan et al. 2012), and stem canker on dragon fruit in Malaysia and Florida (Mohd et al. 2013; Sanahuja et al. 2016) but this is the first report of N. dimidiatum causing postharvest fruit rot on guava in Malaysia. This disease can cause significant postharvest losses to guava production which could lower marketable yield and proper control strategies should be implemented.
  2. Rosli H, Batzer JC, Hernández E, Beruski G, Dixon PM, Gleason ML
    Plant Dis, 2020 Sep;104(9):2398-2405.
    PMID: 32689919 DOI: 10.1094/PDIS-11-19-2340-RE
    The spatial dissemination of three prevalent taxa of sooty blotch and flyspeck (SBFS) fungi under several levels of precipitation was compared during 2015 and 2016 in an Iowa apple orchard. Overhead irrigation was used to supplement ambient precipitation in order to insure SBFS spore dissemination and colony development. There were five irrigation levels, involving 1-min-long periods of irrigation that were imposed either once or twice per hour at intervals of 3, 6, or 12 h, as well as a nonirrigated control. Preselected apple fruit were inoculated with one of the three SBFS taxa to serve as sources of inoculum. Dissemination from these inoculated apple fruit was assessed at harvest by counting SBFS colonies on water-sprayed and nontreated fruit. As a further control, additional fruit were enclosed in fruit bags throughout the fruit development period. In both 2015 and 2016, the number of colonies of the SBFS fungus Peltaster gemmifer per apple increased sharply as the duration of irrigation increased, whereas the number of colonies of Microcyclosporella mali increased to a lesser extent and Stomiopeltis sp. RS1 showed no increase. In 2015, the linear relationship between the duration of irrigation-imposed precipitation levels and the number of colonies on the water-sprayed apple fruit was similar for P. gemmifer (slope = 0.09), Stomiopeltis sp. RS1 (slope = 0.07), and Microcyclosporella mali (slope = 0.13); whereas, in 2016, the slope was higher for P. gemmifer (0.28) than for Stomiopeltis sp. RS1 (-0.09) or M. mali (0.06). The results indicated that dissemination of P. gemmifer increased sharply in response to increased irrigation-imposed precipitation, and that dissemination patterns differed considerably among the three SBFS taxa. The apparent advantage of P. gemmifer in precipitation-triggered dissemination may stem from its ability to produce spores rapidly by budding. To our knowledge, this is the first article to assess splash dispersal by SBFS fungi in the field and the first to document taxon-specific patterns of dissemination in this pathogen complex.
  3. Ismail SI, Abd Razak NF
    Plant Dis, 2020 Sep 23.
    PMID: 32967557 DOI: 10.1094/PDIS-07-20-1491-PDN
    Watermelon (Citrullus lanatus L.) is widely cultivated and consumed in Malaysia for its nutritional value. In June 2018, nearly 40% of the 'Red Rocky' watermelon plants in experimental plots of the research farm at Faculty of Agriculture, UPM Serdang, Selangor, Malaysia had leaf spot symptoms. Leaf spots were small, ranging 5 to 30 mm, yellow to brown, and circular to irregular in shape. With ages, the leafspots gradually enlarged and coalesced. To investigate the disease, ten symptomatic leaves were collected from the experimental plots. Diseased tissues (5 x 5 mm) were excied and surface sterilized with 0.5% sodium hypochlorite (NaOCl) for 2 min, rinsed twice with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 25 °C for 5 days. A total of ten isolates with similar colony morphologies were obtained from tissue samples. A single representative isolate "F" was further characterized by molecular analysis. All colonies were initially white in color, but later turned gray to black upon sporulation after 7 days. Conidia were produced in culture and were single-celled, black, smooth-walled, spherical in shape measuring 11.4 to 14 μm x 13.8 to 19 μm in diameter (n=40). These were borne on hyaline vesicles at the tip of a conidiophore. For molecular identification, genomic DNA was extracted from fresh mycelium of isolate F using DNeasy Plant Mini kit (Qiagen, Germantown, MD, USA). The internal transcribed spacer (ITS) region of rDNA and the translation elongation factor 1-alpha (TEF1-α) gene were amplified using the ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1-986R primer sets (Carbone and Kohn 1999), respectively. BLASTn analysis of the ITS sequence revealed 100% identity (526 bp out of 526 bp) to Nigrospora sphaerica (GenBank Accession no. HQ608063). TEF1-α sequence had 100% identity (494 bp out 494 bp) with N. sphaerica (GenBank Accession no. MN995332). The resulting sequences were deposited in GenBank (ITS: Accession no. MK544066; TEF1-α Accession no. MT708197). Based on morphological and molecular characteristics, isolate "F" was identified as Nigrospora sphaerica (Sacc.) Mason (Chen et al. 2018). A pathogenicity test was conducted on five healthy leaves of five one-month-old watermelon 'Red Rocky' plants grown in a greenhouse. Leaves were wounded using a 34-mm-diameter florist pin frog and spray-inoculated until runoff with a conidial suspension (1 × 106 conidia/ml) of a 7-day-old culture. Five leaves from additional 2 plants were sprayed with sterile distilled water to serve as controls. Inoculated plants were covered with polyethylene bags for 48 h to maintain high humidity. Ten days post-inoculation, symptoms on inoculated leaves developed brown-to-black lesions similar to those observed in the field, while control leaves remained asymptomatic. N. sphaerica was re-isolated from all symptomatic tissues confirming Koch's postulates. N. sphaerica is distributed on a wide range of hosts and has been reported from 40 different host genera including monocotyledonous and dicotyledonous hosts (Wang et al. 2017). N. sphaerica has been reported to cause leaf spot of date palm in Pakistan (Alam et al. 2020) and kiwifruit in China (Chen et al. 2016). To our knowledge, this is the first report of N. sphaerica causing leaf spot of watermelon in Malaysia. This new disease could reduce fruit quality since sweetness and ripening are dependent on healthy foliage. Additionally, this disease can cause premature defoliation which would also reduce watermelon productivity.
  4. Ismail SI, Noor Asha NA, Zulperi D
    Plant Dis, 2020 Nov 02.
    PMID: 33135990 DOI: 10.1094/PDIS-06-20-1380-PDN
    Rockmelon, (Cucumis melo L.) is an economically important crop cultivated in Malaysia. In October 2019, severe leaf spot symptoms with a disease incidence of 40% were observed on the leaves of rockmelon cv. Golden Champion at Faculty of Agriculture, Universiti Putra Malaysia (UPM). Symptoms appeared as brown necrotic spots, 10 to 30 mm in diameter, with spots surrounded by chlorotic halos. Pieces (5 x 5 mm) of diseased tissue were sterilized with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA) and incubated at 25°C for 7 days with a 12-h photoperiod. Nine morphologically similar isolates were obtained by using single spore isolation technique and a representative isolate B was characterized further. Colonies were abundant, whitish aerial mycelium with orange pigmentation. The isolates produced macroconidia with 5 to 6 septa, a tapered with pronounced dorsiventral curvature and measured 25 to 30 μm long x 3 to 5 μm wide. Microconidia produced after 12 days of incubation were single-celled, hyaline, ovoid, nonseptate, and 1.0 to 3.0 × 4.0 to 10.0 µm. Morphological characteristics of the isolates were similar to the taxonomic description of Fusarium equiseti (Leslie and Summerell 2006). Genomic DNA was extracted from fresh mycelium using DNeasy Plant Mini kit (Qiagen, USA). To confirm the identity of the fungus, two sets of primers, ITS4/ITS5 (White et al. 1990) and TEF1-α, EF1-728F/EF1-986R (Carbone and Kohn 1999) were used to amplify complete internal transcribed spacer (ITS) and partial translation elongation factor 1-alpha (TEF1-α) genes, respectively. BLASTn search in the NCBI database using ITS and TEF-1α sequences revealed 99 to 100% similarities with species of both F. incarnatum and F. equiseti. BLAST analysis of these in FUSARIUM-ID database showed 100% and 99% similarity with Fusarium incarnatum-F. equiseti species complex (FIESC) (NRRL34059 [EF-1α] and NRRL43619 [ITS]) respectively (Geiser et al. 2004). The ITS and TEF1-α sequences were deposited in GenBank (MT515832 and MT550682). The isolate was identified as F. equiseti, which belongs to the FIESC based on morphological and molecular characteristics. Pathogenicity was conducted on five healthy leaves of 1-month-old rockmelon cv. Golden Champion grown in 5 plastic pots filled with sterile peat moss. The leaves were surface-sterilized with 70% ethanol and rinsed twice with sterile-distilled water. Then, the leaves were wounded using 34-mm-diameter florist pin frog and inoculated by pipetting 20-μl conidial suspension (1 × 106 conidia/ml) of 7-day-old culture of isolate B onto the wound sites. Control leaves were inoculated with sterile-distilled water only. The inoculated plants were covered with plastic bags for 5 days and maintained in a greenhouse at 25 °C, 90% relative humidity with a photoperiod of 12-h. After 7 days, inoculated leaves developed necrotic lesions similar to the symptoms observed in the field while the control treatment remained asymptomatic. The fungus was reisolated from the infected leaves and was morphologically identical to the original isolate. F. equiseti was previously reported causing fruit rot of watermelon in Georgia (Li and Ji 2015) and China (Li et al. 2018). This pathogen could cause serious damage to established rockmelon as it can spread rapidly in the field. To our knowledge, this is the first report of a member of the Fusarium incarnatum-F.equiseti species complex causing leaf spot on Cucumis melo in Malaysia.
  5. Li B, Liu X, Jimiao C, Feng Y, Huang G
    Plant Dis, 2020 Nov 13.
    PMID: 33185516 DOI: 10.1094/PDIS-09-20-1930-PDN
    Natural rubber is an important industrial raw material and an economically important perennial in China. In recent years, A new leaf fall disease, caused by Neopestalotiopsis aotearoa Maharachch., K.D. Hyde & Crous, has occurred in Indonesia, Malaysia, Thailand, Sri Lanka, and other major rubber planting countries. In May and July of 2020, this disease was first found on 2-year-old rubber seedlings in two plantations located in Ledong and Baisha counties in Hainan Province, China. In the two plantations of approximately 32 ha, 15% of the rubber seedlings had the disease and the defoliation was more than 20%. The infected leaves turned yellow and watery, and dark brown and nearly round lesions of 1-2 mm in diameter were formed on the leaves. When the humidity was high, the center of the lesion was grey-white, and the lesions had many small black dots, black margins and surrounded by yellow halos. When the disease was severe, leaves fell off. To identify the pathogen, leaf tissues were collected from lesion margins after leaf samples were surface-sterilized in 75% ethanol, rinsed with sterile water for three times, and air dried. The leaf tissues were plated on potato dextrose agar (PDA) and incubated at 28°C for seven days. Fungal cultures with similar morphology were isolated from 90% of tested samples and two isolates (HNPeHNLD2001 and HNPeHNLD2002) were used in pathogenicity and molecular tests. Rubber leaves (clone PR107) were inoculated with conidial suspension (106 conidia/ml), and inoculated with PDA were used as the control, Each treatment had 3 leaves, and each leaf was inoculated with 3 spots and incubated at 28oC under high moisture conditions. Five days later, leaves inoculated with conidial suspension showed black leaf spots resembling the disease in the field, whereas the control leaves remained symptomless. The fungal cultures isolated from the inoculated tissues, had identical morphology compared with the initial isolates. Colonies on PDA were 55-60 mm in diameter after seven days at 28°C, with undulate edges, pale brown, thick mycelia on the surface with black, gregarious conidiomata; and the reverse side was similar in color. Black conidia were produced after eight days of culture on PDA. Conidia were fusoid, ellipsoid, straight to slightly curved, 4-septate, ranged from 18.35 to 27.12 μm (mean 22.34 μm) × 4.11 to 7.03 μm (mean 5.41 μm). The basal cells were conic with a truncate base, hyaline, rugose and thin-walled, 4.35 to 6.33 μm long (mean 4.72 μm). Three median cells were doliform, 12.53 to 18.97 μm long (mean 15.26 μm), hyaline, cylindrical to subcylindrical, thin- and smooth-walled, with 2-3 tubular apical appendages, arising from the apical crest, unbranched, filiform, 14.7 to 25.3 μm long (mean 19.94 μm). The basal appendages were singlar, tubular, unbranched, centric, 3.13 to 7.13 μm long (mean 5.48 μm). Morphological characteristics of the isolates were similar to the descriptions of N. aotearoa (Maharachchikumbura et al. 2014). The rDNA internal transcribed spacer (ITS) region, translation elongation factor 1-αgenes (TEF), and beta-tubulin (TUB2) gene were amplified using the primer pairs ITS1/ITS4, EF1-728F/EF1-986R and T1/Bt-2b (Pornsuriya et al. 2020), respectively. The sequences of these genes were deposited in GenBank (ITS Accession Nos.: MT764947 and MT764948; TUB2: MT796262 and MT796263; TEF: MT800516 and MT800517). According to the latest classification of Neoprostalotiopsis spp. (Maharachchikumbura et al. 2014) and multilocus phylogeny, isolates HNPeHNLD2001 and HNPeHNLD2002 were clustered in the same branch with N. aotearoa. Thus, the pathogen was identified as N. aotearoa, which is different from N. cubana and N. formicarum reported in Thailand (Pornsuriya et al. 2020; Thaochan et al. 2020). The Neopestalotiopsis leaf spotdisease of rubber tree (H. brasiliensis) was one of the most serious and destructive leaf diseases in major rubber planting countries in Asia. ( Tajuddin et al. 2020) The present study of leaf fall disease on rubber tree caused byN. aotearoa is the first report in China. The finding provides the basic pathogen information for further monitoring the disease and its control.
  6. Li X, Li J, Bai HY, Xu K, Zhang R, Huang Q
    Plant Dis, 2020 Nov 18.
    PMID: 33206019 DOI: 10.1094/PDIS-09-20-2066-PDN
    Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are "chalara" or "thielaviopsis" (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.
  7. Toporek SM, Keinath AP
    Plant Dis, 2020 Nov 23.
    PMID: 33225814 DOI: 10.1094/PDIS-08-20-1656-PDN
    Anthracnose fruit rot caused by various Colletotrichum spp. is a serious disease for pepper (Capsicum annuum) growers, resulting in extensive fruit loss (Harp et al. 2008). Samples of five pepper fruits were obtained from two commercial farms in Lexington and Pickens counties, South Carolina, in August and September 2019, respectively. All fruits had two or more soft, sunken lesions covered with salmon-colored spore masses. Pieces of diseased tissue cut from the margins of lesions were surface disinfested in 0.6% sodium hypochlorite, rinsed in sterile deionized water, blotted dry, and placed on one-quarter-strength potato dextrose agar (PDA/4) amended with 100 mg chloramphenicol, 100 mg streptomycin sulfate, and 60.5 mg mefenoxam (0.25 ml Ridomil Gold EC) per liter. Two isolates of Colletotrichum sp. per fruit were preserved on dried filter paper and stored at 10º C. One additional isolate of Colletotrichum sp. had been collected from a jalapeño pepper fruit on a farm in Charleston County, South Carolina, in 1997. Colony morphology of three isolates, one per county, on Spezieller Nährstoffarmer Agar (SNA) was pale grey with a faint orange tint. All isolates readily produced conidia on SNA with an average length of 16.4 μm (std. dev. = 1.8 μm) and a width of 2.2 μm (std. dev. = 0.2 μm). Conidia were hyaline, smooth, straight, aseptate, cylindrical to fusiform with one or both ends slightly acute or round, matching the description of C. scovillei (Damm et al. 2012). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin (TUB2) genes from three isolates were amplified and sequenced with the primer pairs GDF1/GDR1 and T1/Bt2b, respectively. Species within the C. acutatum clade can be readily distinguished with GAPDH or TUB2 (Cannon et al. 2012). The GAPDH and TUB2 sequences for all three isolates were 100% similar to each other and strain CBS 126529 (GAPDH accession number JQ948597; TUB2 accession number JQ949918) of C. scovillei (Damm et al. 2012). GAPDH and TUB2 sequences for each isolate were deposited in GenBank under the accessions MT826948-MT826950 and MT826951-MT826953, respectively. A pathogenicity test was conducted on jalapeño pepper fruits by placing a 10-ul droplet of a 5 x 105 conidial suspension of each isolate onto a wound made with a sterile toothpick. Control peppers were mock inoculated with 10 ul sterile distilled water. A humid chamber was prepared by placing moist paper towels on the bottom of a sealed crisper box. Inoculated peppers were placed on upside-down 60 ml plastic condiment cups. Three replicate boxes each containing all four treatments were prepared. The experiment was repeated once. After 7 days in the humid chamber at 26ºC, disease did not develop on control fruits, whereas soft, sunken lesions covered with salmon-colored spores developed on inoculated fruits. Lesions were measured and C. scovillei was re-isolated onto amended PDA/4 as previously described. Lesion length averaged 15.6 mm (std dev. = 4.1 mm) by 11.5 mm (std dev. = 2.0 mm). Colletotrichum sp. resembling the original isolate were recovered from all inoculated fruit, but not from non-inoculated fruit. C. scovillei has been reported in Brazil in South America and in China, Indonesia, Japan, Malaysia, South Korea, Taiwan, and Thailand in Asia (Farr and Rossman 2020). This is the first report of C. scovillei as the casual organism of anthracnose fruit rot on pepper in South Carolina and the United States.
  8. Ismail SI, Roslen A
    Plant Dis, 2020 Dec 16.
    PMID: 33325746 DOI: 10.1094/PDIS-08-20-1700-PDN
    Euphorbia tithymaloides L. (zig-zag plant) is a succulent, perennial shrub belonging to the Euphorbiaceae family and is widely cultivated in Malaysia for ornamental purposes and commercial values. In June 2019, typical symptoms of powdery mildew were observed on over 50% of the leaves of E. tithymaloides in a garden at Universiti Putra Malaysia, Serdang city of Selangor province, Malaysia. Initial symptoms included circular to irregular white powdery fungal colonies on both leaf surfaces and later covered the entire leaf surface. Severely infected leaves became necrotic, distorted and senesced. A voucher specimen Ma (PM001-Ma) was deposited in the Mycology laboratory, Faculty of Agriculture, UPM. Microscopic observation showed hyphae hyaline, branched, thin-walled, smooth, 3 to 6 µm wide with nipple-shaped appressoria. Conidiophores were straight, measured 30 to 90 μm long × 8 to 12 μm wide and composed of a cylindrical foot cell, 50 to 75 μm long. Conidia formed in chains were hyaline, ellipsoid to oval with fibrosin bodies, measured 25 to 36 × 16 to 20.1 μm in size and chasmothecia were not observed on the infected leaves. Genomic DNA was directly isolated from mycelia and conidia of isolate Ma using DNeasy Plant Mini Kit (Qiagen, USA). The universal primer pair ITS4/ITS5 of rDNA (White et al. 1990) was used for amplification and the resulting 569-bp sequence was deposited in GenBank (Accession no. MT704550). A BLAST nucleotide search revealed 100% similarity with that of Podosphaera xanthii on Momordica charantia wild from Taiwan (Accession no. KM505135) (Kirschner and Liu 2015). Both the morphological characteristics of the anamorph and ITS sequence data support the identification of this powdery mildew on E. tithymaloides as Podosphaera xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012). A pathogenicity test was conducted by gently pressing the infected leaves onto young leaves of five healthy potted plants. Five noninoculated plants were used as controls. The inoculated plants were maintained in a greenhouse at 25 ± 2°C and the test was repeated. Seven days after inoculation, white powdery symptoms were observed similar to those on the naturally infected leaves, while control plants remained asymptomatic. The fungus on the inoculated leaves was morphologically and molecularly identical to the fungus on the original specimens. Sequence alignments were made using MAFFT v.7.0 (Katoh et al. 2019) and a maximum likelihood phylogram was generated by MEGA v.7.0 (Kumar et al. 2016). Isolate Ma grouped in a strongly supported clade (100% bootstrap value) with the related species of P. xanthii available in GenBank based on the ITS region. Powdery mildew caused by P. xanthii has been reported as a damaging disease that can infect a broad range of plants worldwide (Farr and Rossman 2020). It also has been recently reported on Sonchus asper in China (Shi et al. 2020). According to our knowledge, this is the first report of powdery mildew caused by P. xanthii on E. tithymaloides worldwide. The occurrence of powdery mildew on E. tithymaloides could pose a serious threat to the health of this plant, resulting in death and premature senescence of young leaves.
  9. Ismail SI, Rahim NA, Zulperi D
    Plant Dis, 2020 Dec 21.
    PMID: 33349005 DOI: 10.1094/PDIS-06-20-1371-PDN
    Thai basil (Ocimum basilicum L.) is widely cultivated in Malaysia and commonly used for culinary purposes. In March 2019, necrotic lesions were observed on the inflorescences of Thai basil plants with a disease incidence of 60% in Organic Edible Garden Unit, Faculty of Agriculture in the Serdang district (2°59'05.5"N 101°43'59.5"E) of Selangor province, Malaysia. Symptoms appeared as sudden, extensive brown spotting on the inflorescences of Thai basil that coalesced and rapidly expanded to cover the entire inflorescences. Diseased tissues (4×4 mm) were cut from the infected lesions, surface disinfected with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, placed onto potato dextrose agar (PDA) plates and incubated at 25°C under 12-h photoperiod for 5 days. A total of 8 single-spore isolates were obtained from all sampled inflorescence tissues. The fungal colonies appeared white, turned grayish black with age and pale yellow on the reverse side. Conidia were one-celled, hyaline, subcylindrical with rounded end and 3 to 4 μm (width) and 13 to 15 μm (length) in size. For fungal identification to species level, genomic DNA of representative isolate (isolate C) was extracted using DNeasy Plant Mini Kit (Qiagen, USA). Internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), and chitin synthase-1 (CHS-1) were amplified using ITS5/ITS4 (White et al. 1990), CL1C/CL2C (Weir et al. 2012), ACT-512F/783R, and CHS-79F/CHS-345R primer sets (Carbone and Kohn 1999), respectively. A BLAST nucleotide search of ITS, CHS-1, CAL and ACT sequences showed 100% similarity to Colletotrichum siamense ex-type cultures strain C1315.2 (GenBank accession nos. ITS: JX010171 and CHS-1: JX009865) and isolate BPDI2 (CAL: FJ917505, ACT: FJ907423). The ITS, CHS-1, CAL and ACT sequences were deposited in GenBank as accession numbers MT571330, MW192791, MW192792 and MW140016. Pathogenicity was confirmed by spraying a spore suspension (1×106 spores/ml) of 7-day-old culture of isolate C onto 10 healthy inflorescences on five healthy Thai basil plants. Ten infloresences from an additional five control plants were only sprayed with sterile distilled water and the inoculated plants were covered with plastic bags for 2 days and maintained in a greenhouse at 28 ± 1°C, 98% relative humidity with a photoperiod of 12-h. Blossom blight symptoms resembling those observed in the field developed after 7 days on all inoculated inflorescences, while inflorescences on control plants remained asymptomatic. The experiment was repeated twice. C. siamense was successfully re-isolated from the infected inflorescences fulfilling Koch's postulates. C. siamense has been reported causing blossom blight of Uraria in India (Srivastava et al. 2017), anthracnose on dragon fruit in India and fruits of Acca sellowiana in Brazil (Abirami et al. 2019; Fantinel et al. 2017). This pathogen can cause a serious threat to cultivation of Thai basil and there is currently no effective disease management strategy to control this disease. To our knowledge, this is the first report of blossom blight caused by C. siamense on Thai basil in Malaysia.
  10. Kuruppu M, Siddiqui Y, Ahmad K, Ali A
    Plant Dis, 2020 Dec 29.
    PMID: 33373283 DOI: 10.1094/PDIS-10-20-2318-PDN
    Repeated sampling conducted from December 2019 to March 2020, and fruit of pineapple (Ananas comosus) var MD2 showing early stem end rot symptoms including brown and rotten fruit skin near the stem end region (Fig.1Aa) or darker skin with black discoloration (Fig.1Ab) indicated a consistent fungal infection. The samples (30 fruits from each location) were collected from store houses in three farmer fields with 60% disease incidence in Serdang, (3.0220oN,101.7055oE), Selangor, West Malaysia. The pulp of infected fruits appeared watery with characteristic spoilage odour. Symptomatic necrotic tissues from stem end region and skin were cut in to pieces (1x1cm), surface sterilized and plated onto potato dextrose agar amended aseptically with 0.5 g L-1 streptomycin sulphate. The plates were incubated at room temperature (28±2oC) in natural light conditions. Five days old cultures were light grey in colour and gradually turned dark brown to black with dense deeply tufted, mycelium as the culture aged (Fig.1B, C). Conidial morphology was observed using compound microscope (Olympus model BX-50F4, Tokyo, Japan) equipped with Dino-Eye. Branched mycelia with 0-1 septate arthospores were evident in 14 days old cultures (Fig.1D). Measured arthroconidia (5 to10x3 to 4.5µm) were ellipsoid to ovoid or round shaped, hyaline with an acutely rounded apex, truncate base, initially aseptate (Fig.1E) and arranged as chain at maturity (Fig.1F). The pathogen was identified through PCR amplification of the internal transcribed spacer (ITS) region using ITS1 and ITS4 primers (White et al., 1990) and BLASTn homology search as Neoscytalidium dimidiatum based on 100% similarity to a reference sequence (accession number KJ648577) that was previously deposited (Mohd et al.,2013). The sequence was deposited in Gen Bank ( accession number MW082810). Pathogenicity test was performed using the mycelial plug inoculation method and repeated twice with five replicates. Healthy MD2 pineapple fruits were surface sterilized with 1% NaOCl solution for15 min. followed by washing with sterilized distilled water. One centimeter diameter PDA plug at the margin of actively growing seven days old cultures were inserted in each of two inoculation wounds made on the skin and stem end of each fruit then the wounds were wrapped with moist cotton wool. Non-colonized PDA plugs were used to inoculate the control fruits. Fruits were incubated under 85% RH at room temperature. Five days after inoculation, the fruits showed similar dark necrotic discoloration and confirmed as N.dimidiatum by PCR (Fig.1G). The Koch postulates were fulfilled by inoculation and re-isolation of the fungal pathogen. This pathogen has also been reported previously to cause economic losses on a number of other hosts, such as pitayah fruits in Israel and Malaysia (Erza et al., 2013; Mohd et al., 2013)) and almond in California (Mohomed et al., 2018). To our knowledge this is the first report of N. dimidiatum causing postharvest stem end rot on MD2 pineapple in Malaysia. It may have the possibility to develop postharvest economic losses to pineapple industry, if severely affected fruits with high population of the pathogen left unattended in store houses.
  11. Choi ED, Kim Y, Lee Y, Jeong MH, Kim GH, Song JH, et al.
    Plant Dis, 2021 Feb 16.
    PMID: 33591825 DOI: 10.1094/PDIS-09-20-1948-PDN
    Pears (Pyrus pylifolia L.) are cultivated nationwide as one of the most economically important fruit trees in Korea. At the end of October 2019, bleeding canker was observed in a pear orchard located in Naju, Jeonnam Province (34°53'50.54″ N, 126°39'00.32″ E). The canker was observed on trunks and branches of two 25-year-old trees, and the diseased trunks and branches displayed partial die-back or complete death. When the bark was peeled off from the diseased trunks or branches, brown spots or red streaks were found in the trees. Bacterial ooze showed a rusty color and the lesion was sap-filled with a yeasty smell. Trunks displaying bleeding symptoms were collected from two trees. Infected bark tissues (3 × 3 mm) from the samples were immersed in 70% ethanol for 1 minute, rinsed three times in sterilized water, ground to fine powder using a mortar and pestle, and suspended in sterilized water. After streaking each suspension on Luria-Bertani (LB) agar, the plates were incubated at 25°C without light for 2 days. Small yellow-white bacterial colonies with irregular margins were predominantly obtained from all the samples. Three representative isolates (ECM-1, ECM-2 and ECM-3) were subjected to further characterization. These isolates were cultivated at 39 C, and utilized (-)-D-arabinose, (+) melibiose, (+)raffinose, mannitol and myo-inositol but not 5-keto-D-gluconate, -gentiobiose, or casein. These isolates were identified as Dickeya sp. based on the sequence of 16S rRNA (MT820458-820460) gene amplified using primers 27f and 1492r (Heuer et al. 2000). The 16S rRNA sequences matched with D. fangzhongdai strain ND14b (99.93%; CP009460.1) and D. fangzhongdai strain PA1(99.86%; CP020872.1). The recA, fusA, gapA, purA, rplB, and dnaX genes and the intergenic spacer (IGS) regions were also sequenced as described in Van der wolf et al. (2014). The recA (MT820437-820439), fusA (MT820440-820442), gapA (MT820443-820445), purA (MT820446-820448), rplB (MT820449-820451), dnaX (MT820452-820454) and IGS (MT820455-820457) sequences matched with D. fangzhongdai strains JS5, LN1 and QZH3 (KT992693-992695, KT992697-992699, KT992701-992703, KT992705-992707, KT992709-992711, KT992713-992715, and KT992717-992719, respectively). A neighbor-joining phylogenetic analysis based on the concatenated recA, fusA, gapA, purA, rplB, dnaX and IGS sequences placed the representative isolates within a clade comprising D. fangzhongdai. ECM-1 to 3 were grouped into a clade with one strain isolated from waterfall, D. fangzhongdai ND14b from Malaysia. Pathogenicity test was performed using isolate ECM-1. Three two-year-old branches and flower buds on 10-year-old pear tree (cv. Nittaka), grown at the National Institute of Horticultural and Herbal Science Pear Research Institute (Naju, Jeonnam Province in Korea), were inoculated with 10 μl and 2 μl of a bacterial suspension (108 cfu/ml), respectively, after wounding inoculation site with a sterile scalpel (for branch) or injecting with syringe (for flower bud). Control plants were inoculated with water. Inoculated branches and buds in a plastic bag were placed in a 30℃ incubator without light for 2 days (Chen et al. 2020). Both colorless and transparent bacterial ooze and typical bleeding canker were observed on both branches and buds at 3 and 2 weeks post inoculation, respectively. No symptoms were observed on control branches and buds. This pathogenicity assay was conducted three times. We reisolated three colonies from samples displaying the typical symptoms and checked the identity of one by sequencing the dnaX locus. Dickeya fangzhongdai has been reported to cause bleeding canker on pears in China (Tian et al. 2016; Chen et al. 2020). This study will contribute to facilitate identification and control strategies of this disease in Korea. This is the first report of D. fangzhongdai causing bleeding canker on pears in Korea.
  12. Serrato-Diaz LM, Goenaga R
    Plant Dis, 2021 Feb 25.
    PMID: 33630683 DOI: 10.1094/PDIS-10-20-2265-PDN
    Dragon fruit or pitahaya (Hylocereus spp.) is a tropical fruit belonging to the Cactaceae. It is native to Central and South America and commercially grown in the United States in southern California, south Florida and Puerto Rico. During a disease survey from April to June 2020, stem canker was observed in greenhouses and commercial orchards located in Mayaguez and San Sebastian, Puerto Rico with an incidence of 80%. Diseased cladodes (stems) of 1 mm2 tissue sections of 23 pitahaya varieties (NOI-13, NOI-14, NOI-16, N97-15, N97-17, N97-18, N97-20, N97-22, American Beauty, Cosmic Charlie, Halley's comet, Purple Haze, Alice, Bloody Mary, Dark Star, David Bowie, Delight, Makisupa, Red Jaina, Soul Kitchen, Vietnamese Jaina, Neitzel and Lisa) were disinfested with 70% ethanol, rinsed with double distilled water and plated on potato dextrose agar (PDA) amended with 60 mg/L streptomycin. Three isolates (17B-173-T3, 12C-118-T1 and 13B-131-T2) of Neoscytalidium dimidiatum (syn. N. hyalinum) were identified using taxonomic keys (Crous et al., 2006) and sequencing of the internal transcribed spacer (ITS) with primers ITS5 and ITS4 (White et al. 1990) and translation elongation factor 1 alpha (TEF1-α) with primers EF1-728F and EF1-986R (Carbone and Kohn, 1999). Sequences were compared using the BLASTn tool with N. dimidiatum deposited in NCBI GenBank. In PDA, colonies of N. dimidiatum were initially powdery white and turned grayish-black with age. Arthroconidia (n=50) were dark brown, disarticulating, truncate or cylindrical at the base, thick-walled with 0 to 1 septum, averaging 9.1 X 5.5um in length. GenBank accession numbers of N. dimidiatum DNA sequences were MT921260, MT921261 and MT921262 for ITS and MT920898, MT920899 and MT920900 for TEF1-α. Sequences were 99-100% identical with Ex-isotype CBS145.78 accession numbers KF531816 for ITS and KF531795 for TEF1-α. Pathogenicity tests were conducted on 12 healthy dragon fruit plants of 1.5 years old using three non-detached cladodes per plant. Cladodes were inoculated with 5mm mycelial plugs from 8-day-old pure cultures grown on PDA. Three healthy dragon fruit plants were used as controls and were inoculated with PDA plugs only. The experiment was repeated once. Twenty days after inoculations (DAI), isolates of N. dimidiatum caused stem canker on dragon fruit plants. For all isolates, sunken orange spots averaged 3 X 2 mm in length at 8 DAI. Necrotic blotches with chlorotic halos averaged 10 X 15 mm at 14 DAI; stem cankers with water-soaked tissue were observed at 20 DAI, and arthroconidia and black pycnidia on dry stem cankers at 30 DAI. Untreated controls had no symptoms of stem canker, and no fungi were isolated from tissue. Neoscytalidium dimidiatum has been reported to cause stem canker on Hylocereus spp. in China, Florida, Israel, Malaysia and Taiwan (Chuang et al. 2012; Lan et al., 2012; Ezra et al., 2013; Sanahuja et al., 2016). To our knowledge, this is the first report of N. dimidiatum causing stem canker on dragon fruit in Puerto Rico. References: 1. Carbone, I., and Kohn, L. 1999. Mycologia, 91:553. doi:10.2307/3761358 2. Chuang, M. F. et al. 2012. Plant Disease 96: 906. https://doi.org/10.1094/PDIS-08-11-0689-PDN. 3. Crous, P. W., et al. 2006. Stud. Mycol. 55:235. https://doi.org/10.3114/sim.55.1.235 4. Ezra et al. 2013. Plant Disease 97: 1513. https://doi.org/10.1094/PDIS-05-13-0535-PDN 5. Lan, G.B. et al. 2012. Plant Disease 96: 1702. https://doi.org/10.1094/PDIS-07-12-0632-PDN 6. Sanahuja et al. 2016. Plant Disease 100: 1499. https://doi.org/10.1094/PDIS-11-15-1319-PDN 7. White, T., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
  13. Weng YY, Liou WC, Chien Y, Liao PQ, Wang CJ, Chiu YC, et al.
    Plant Dis, 2021 Mar 29.
    PMID: 33779263 DOI: 10.1094/PDIS-12-20-2666-PDN
    Snake gourd (Trichosanthes cucumerina L.), an annual climbing plant belonging to the family of Cucurbitaceae, is native to Southeast Asia countries, e.g., India, Pakistan, Malaysia, China, and Indonesia. It is commonly consumed as a vegetable and also used as a traditional herbal medicine due to the antidiabetic, anti-inflammatory, antibacterial, hepatoprotective, and cytotoxic activities (Devi 2017). In September 2020, phytoplasma-induced disease symptoms such as little leaf, yellowing, phyllody, virescence, and witches' broom were observed on snake gourd in Yunlin County, Taiwan. The cross-sectional examination of the symptomatic plant by transmission electron microscopy showed typical phytoplasma-like pleomorphic bodies with spherical, oval and tubular shapes in sieve elements. Further examination by nested PCR revealed that a 1.2 kb DNA fragment for 16S rRNA gene was only amplified from symptomatic leaf of snake gourd using the phytoplasma universal primer pairs P1/P7 followed by R16F2n/R16R2. BLAST and iPhyClassifier (https://plantpathology.ba.ars.usda.gov/cgi-bin/resource/iphyclassifier.cgi) analyses on the amplified DNA fragment (accession no. MW309142) revealed that it shares 100% identity with that of GenBank accession NZ_AMWZ01000008 (complement [31109 to 32640]) of peanut witches' broom (PnWB) phytoplasma, a 'Candidatus phytoplasma aurantifolia'-related strain (Firrao et al. 2004), and could be classified into the 16SrII-V subgroup. Samples examined by nested PCR were further characterized by western blotting using the polyclonal antibody raised against the Imp of PnWB phytoplasma (Chien et al. 2020a, b). An expected signal of 19 kDa specific for Imp was only detected in the symptomatic snake gourd, but not in healthy snake gourd. Since the disease symptoms caused by phytoplasma infection are highly dependent on the secreted effectors (Namba 2019), phyllogen gene that is responsible for phyllody and virescence symptoms was amplified from symptomatic snake gourd by PCR. BLAST analysis revealed that phyllogen identified in snake gourd is identical with that of PnWB phytoplasma. In Taiwan, species of family Cucurbitaceae such as loofah, bitter gourd, and pumpkin are commonly infected by 16SrVIII phytoplasma (Davis 2017). In this study, we report for the first time that snake gourd, a species of family Cucurbitaceae, was infected by 16SrII-V PnWB phytoplasma in Taiwan.
  14. Zafri AS, Muhamad R, Wahab A, Mokhtar AS, Mohd Hata E
    Plant Dis, 2021 Apr 08.
    PMID: 33829857 DOI: 10.1094/PDIS-02-21-0411-PDN
    Weeds may act as inoculum reservoirs for fungal pathogens that could affect other economically important crops (Karimi et al. 2019). In February 2019, leaves of the ubiquitous invasive weed, Parthenium hysterophorus L. (parthenium weed) exhibiting symptom of blight were observed at Ladang Infoternak Sg. Siput (U), a state-owned livestock center in Perak, Malaysia. Symptoms appeared as irregularly shaped, brown-to-black necrotic lesions across the entire leaf visible from both surfaces, and frequently on the older leaves. The disease incidence was approximately 30% of 1,000 plants. Twenty symptomatic parthenium weed leaves were collected from several infested livestock feeding plots for pathogen isolation. The infected tissues were sectioned and surface-sterilized with 70% ethyl alcohol for 1 min, rinsed three times with sterile distilled water, transferred onto potato dextrose agar, and incubated at 25°C under continuous dark for 7 days. Microscopic observation revealed fungal colonies with similar characteristics. Mycelium was initially white and gradually changed to pale orange on the back of the plate but later turned black as sporulation began. Conidia were spherical or sub-spherical, single-celled, smooth-walled, 12 to 21 μm diameter (mean = 15.56 ± 0.42 μm, n= 30) and were borne on a hyaline vesicle. Based on morphological features, the fungus was preliminarily identified as Nigrospora sphaerica (Sacc) E. W. Mason (Wang et al. 2017). To confirm identity, molecular identification was conducted using isolate 1SS which was selected as a representative isolate from the 20 isolates obtained. Genomic DNA was extracted from mycelia using a SDS-based extraction method (Xia et al. 2019). Amplification of the rDNA internal transcribed spacer (ITS) region was conducted with universal primer ITS1/ITS4 (White et al. 1990; Úrbez-Torres et al. 2008). The amplicon served as a template for Sanger sequencing conducted at a commercial service provider (Apical Scientific, Malaysia). The generated sequence trace data was analyzed with BioEdit v7.2. From BLASTn analysis, the ITS sequence (GenBank accession number. MN339998) had at least 99% nucleotide identity to that of N. sphaerica (GenBank accession number. MK108917). Pathogenicity was confirmed by spraying the leaf surfaces of 12 healthy parthenium weed plants (2-months-old) with a conidial suspension (106 conidia per ml) collected from a 7 day-old culture. Another 12 plants served as a control treatment and received only sterile distilled water. Inoculation was done 2 h before sunset and the inoculated plants were covered with plastic bags for 24 h to promote conidial germination. All plants were maintained in a glasshouse (24 to 35°C) for the development of the disease. After 7 days, typical leaf blight symptoms developed on the inoculated plants consistent with the symptoms observed in the field. The pathogen was re-isolated from the diseased leaves and morphological identification revealed the same characteristics as the original isolate with 100% re-isolation frequency, thus, fulfilling Koch's postulates. All leaves of the control plants remained symptomless and the experiment was repeated twice. In Malaysia, the incidence of N. sphaerica as a plant pathogen has been recorded on several important crops such as watermelon and dragon fruit (Kee et al. 2019; Ismail and Abd Razak 2021). To our knowledge, this is the first report of leaf blight on P. hysterophorus caused by N. sphaerica from this country. This report justifies the significant potential of P. hysterophorus as an alternative weed host for the distribution of N. sphaerica. Acknowledgement This research was funded by Universiti Putra Malaysia (UPM/GP-IPB/2017/9523402). References Ismail, S. I., and Abd Razak, N. F. 2021. Plant Dis. 105:488. Karimi, K., et al. 2019. Front Microbiol. 10:19. Kee, Y. J., et al. 2019. Crop Prot. 122:165. Úrbez-Torres, J. R., et al. 2008. Plant Dis. 92:519. Wang, M., et al. 2017. Persoonia 39:118. White, T. J. et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Xia, Y., et al. 2019. Biosci Rep. 39:BSR20182271.
  15. Zee KY, Asib N, Ismail SI
    Plant Dis, 2021 Apr 14.
    PMID: 33851868 DOI: 10.1094/PDIS-12-20-2732-PDN
    Guava (Psidium guajava L.) is an economically important tropical fruit crop and is cultivated extensively in Malaysia. In September and October 2019, postharvest fruit rot symptoms were observed on 30% to 40% of guava fruit cv. Kampuchea in fruit markets of Puchong and Ipoh cities in the states of Selangor and Perak, Malaysia. Initial symptoms appeared as brown, irregular, water-soaked lesions on the upper portion of the fruit where it was attached to the peduncle. Subsequently, lesions then progressed to cover the whole fruit (Fig.1A). Lesions were covered with an abundance of black pycnidia and grayish mycelium. Ten symptomatic guava fruit were randomly collected from two local markets for our investigation. For fungal isolation, small fragments (5×5 mm) were excised from the lesion margin, surface sterilized with 0.5% NaOCl for 2 min, rinsed three times with sterile distilled water, placed on potato dextrose agar (PDA) and incubated at 25 °C with 12-h photoperiod for 2-3 days. Eight single-spore isolates with similar morphological characteristics were obtained and two representative isolates (P8 and S9) were characterized in depth. Colonies on PDA were initially composed of grayish-white aerial mycelium, but turned dark-gray after 7 days (Fig. 1B). Abundant black pycnidia were observed after incubation for 4 weeks. Immature conidia were hyaline, aseptate, ellipsoid, thick-walled, and mature conidia becoming dark brown and 1-septate with longitudinal striations, 25.0 - 27.0 ± 2.5 × 13.0 - 14.0 ± 1.0 μm (n = 30) (Fig.1C, D). On the basis of morphology, both representative isolates were identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Alves et al. 2008). For molecular identification, genomic DNA of the two isolates was extracted using the DNeasy plant mini kit (Qiagen, USA). The internal transcribed spacer (ITS) region of rDNA and translation elongation factor 1-alpha (EF1-α) genes were amplified using ITS5/ITS4 and EF1-728F/EF1-986R primer set, respectively (White et al. 1990, Carbone and Kohn 1999). BLASTn analysis of the resulting ITS and EF1-α sequences indicated 100% identity to L. theobromae ex-type strain CBS 164.96 (GenBank accession nos: AY640255 and AY640258, respectively) (Phillips et al. 2013). The ITS (MW380428, MW380429) and EF1-α (MW387153, MW387154) sequences were deposited in GenBank. Phylogenetic analysis using the maximum likelihood based on the combined ITS-TEF sequences indicated that the isolates formed a strongly supported clade (100% bootstrap value) to the related L. theobromae (Kumar et al. 2016) (Fig.2). A pathogenicity test of two isolates was conducted on six healthy detached guava fruits per isolate. The fruit were surface sterilized using 70% ethanol and rinsed twice with sterile water prior inoculation. The fruit were wound-inoculated using a sterile needle according to the method of de Oliveira et al. (2014) and five-mm-diameter mycelial agar plugs from 7-days-old PDA culture of the isolates were placed onto the wounds. Six additional fruit were wound inoculated using sterile 5-mm-diameter PDA agar plugs to serve as controls. Inoculated fruit were placed in sterilized plastic container and incubated in a growth chamber at 25 ± 1 °C, 90% relative humidity with a photoperiod of 12-h. The experiment was conducted twice. Five days after inoculation, symptoms as described above developed on the inoculated sites and caused a fruit rot, while control treatment remained asymptomatic. L. theobromae was reisolated from all symptomatic tissues and confirmed by morphological characteristics and confirmed by PCR using ITS region. L. theobromae has recently been reported to cause fruit rot on rockmelon in Thailand (Suwannarach et al. 2020). To our knowledge, this is the first report of L. theobromae causing postharvest fruit rot on guava in Malaysia. The occurrence of this disease needs to be monitored as this disease can reduce the marketable yield of guava. Preventive strategies need to be developed in the field to reduce postharvest losses.
  16. Ismail SI, Mohmad Zaiwawi NL, Abdullah S, Jamian S, Saad N
    Plant Dis, 2021 Apr 15.
    PMID: 33858187 DOI: 10.1094/PDIS-12-20-2614-PDN
    Plumeria alba L. is a flowering plant in the family Apocynaceae and widely cultivated in Malaysia as a cosmopolitan ornamental plant. In January 2020, anthracnose lesions were observed on leaves of Plumeria alba planted in Agricultural Farm, Universiti Putra Malaysia, in Selangor state, Malaysia. The disease mainly affected the leaves with symptoms occurring with approximately a 60% disease incidence. Ten symptomatic leaves were sampled from 3 different trees in the farm. Symptoms initiated as small circular necrotic spots that rapidly enlarged into black lesions with pale brown borders. Diseased tissues (5×5 mm) were surface-sterilized with 70% ethanol for 1 min, rinsed three times with sterile distilled water, dried on sterile filter papers, plated on PDA and, incubated at 25 °C with a 12-h photoperiod. A total of seven single-spore isolates with similar colony morphologies were obtained from tissue samples. After 7 days, the colonies raised the entire margin and showed white-to-gray aerial mycelium, orange conidial masses in the center and appeared dark brown at the center of the reverse view. The conidia were 1-celled, hyaline, smooth-walled, cylindrical with narrowing at the center, averaged (13-15 μm × 3 - 4 μm) (n=40) in size. Morphological characteristics of the isolates were similar to those detailed in taxonomic description of Colletotrichum sp. (Prihastuti et al. 2009). For molecular identification, genomic DNA of two representative isolates, PL3 and PL4 was extracted from fresh mycelium using DNeasy Plant Mini Kit (Qiagen, USA). The internal transcribed spacer (ITS) region, actin (ACT) and calmodulin (CAL) genes were amplified using ITS5/ITS4 (White et al. 1990), ACT-512F/783R (Carbone and Kohn 1999) and CL1C/CL2C primer sets (Weir et al. 2012). A BLAST nucleotide search of GenBank using ITS sequences showed 100% identity to Colletotrichum siamense ex-type culture ICMP 18578 (GenBank accession no. JX010171). ACT and CAL sequences showed 100% identity with C. siamense ex-type isolate BPD-I2 (GenBank accession no. FJ907423 and FJ917505). The sequences were deposited in GenBank (ITS: accession nos. MW335128, MT912574), ACT: accession nos. MW341257, MW341256, CAL: accession nos. MW341255 and MT919260). Based on these morphological and molecular characteristics, the fungus was identified as C. siamense. Pathogenicity of PL3 and PL4 isolates was verified using four healthy detached leaves of Plumeria alba. The leaves were surface-sterilized using 70% ethanol and rinsed twice with sterile water before inoculation. The leaves (three inoculation sites/leaf) were wounded by puncturing with a sterile needle through the leaf cuticle and inoculated in the wound site with 10-μl of conidial suspension (1×106 conidia/ml) from 7-days-old culture on PDA. Four leaves were used as a control and were inoculated only with 10-μl of sterile distilled water. Inoculated leaves were kept in humid chambers for 2 weeks at 25 °C with 98% relative humidity on a 12-h fluorescent light/dark period. The experiment was repeated three times. Anthracnose symptoms were observed on all inoculated leaves after 3 days, whereas controls showed no symptoms. Fungal isolates from the diseased leaves showed the same morphological characteristics as isolates PL3 and PL4, confirming Koch's postulates. C. siamense has been reported causing anthracnose on rose (Rosa chinensis) in China (Feng et al. 2019), Coffea arabica in Thailand (Prihastuti et al. 2009) and mango leaf anthracnose in Vietnam (Li et al. 2020). To our knowledge, this is the first report of Colletrotrichum siamense causing leaf anthracnose on Plumeria alba in Malaysia. Accurate identification of this pathogen provides a foundation in controlling anthracnose disease on Plumeria alba.
  17. Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Mohd Hata E, et al.
    Plant Dis, 2021 May 27.
    PMID: 34042494 DOI: 10.1094/PDIS-04-21-0780-PDN
    Fusarium wilt disease incited by Fusarium oxysporum f. sp. niveum (FON) is the utmost devastating soil-inhabiting fungal pathogen limiting watermelon (Citrullus lanatus) production in Malaysia and globally. The field disease survey of fusarium wilt was carried out during December 2019 and November 2020, in three major production areas (3 farmer fields per location) in Peninsular Malaysia namely, Mersing, Serdang and Kuantan and disease incidence of 30 and 45%, was recorded for each year, respectively. Infected watermelon plants showed symptoms such as vascular discoloration, brown necrotic lesions to the soil line or the crown, one-sided wilt of a plant, or a runner or the whole plant. Infected root and stem tissues, 1-2 cm pieces were surface sterilized with 0.6% NaOCl for 1 minute followed by double washing with sterile water. The disinfected tissues were air-dried and transferred onto semi-selective Komada's medium (Komada 1975) and incubated for 5 days. The fungal colonies produced were placed on potato dextrose agar (PDA) to attain a pure culture and incubated at 25±2℃ for 15 days. The pure fungal colony was flat, round and light purple in color. Macroconidia were straight to slightly curved, 18.56-42.22 µm in length, 2.69-4.08 µm width, predominantly 3 septate and formed in sporodochia. Microconidia measured 6.16-10.86 µm in length and 2.49-3.83 µm in width, kidney-shaped, aseptate and were formed on short monophialides in false-heads. Chlamydospores were single or in pairs with smooth or rough walls, found both terminally or intercalary. To confirm their pathogenicity, two-week-old watermelon seedlings (cv. NEW BEAUTY) were dipped into spore suspension (1 ˟ 106 spores/ml) of representative isolates of JO20 (Mersing), UPM4 (Serdang) and KU41 (Kuantan) for 30 second and then moved into 10 cm diameter plastic pots containing 300 g sterilized soil mix. Disease symptoms were assessed weekly for one month. Control seedlings were immersed in sterile distilled water before transplanting. The inoculated seedlings showed typical Fusarium wilt symptoms like yellowing, stunted growth, and wilting, which is similar to the farmer field infected plants. However, the seedlings inoculated by sterile distilled water remained asymptomatic. The pathogen was successfully re-isolated from the infected seedlings onto Komada's medium, fulfilling the Koch's postulate. For the PCR amplification, primers EF-1 and EF-2 were used to amplify the tef1-α region. A Blastn analysis of the tef1-α sequences of the isolates JO20 (accession nos. MW315902), UPM4 (MW839560) and KU41 (MW839562) showed 100% similarity; with e-value of zero, to the reference sequences of F. oxysporum isolate FJAT-31690 (MN507110) and F. oxysporum f. sp. niveum isolate FON2 790-2 (MN057702). In Fusarium MLST database, isolates JO20, UPM4 and KU41 revealed 100% identity with the reference isolate of NRRL 22518 (accession no. FJ985265). Though isolate FJ985265 belongs to the f. sp. melonis, earlier findings had revealed Fusarium oxysporum f. sp. are naturally polyphyletic and making clusters with diverse groups of the Fusarium oxysporum species complex (O'Donnell et al. 2015). The isolates JO20, UPM4 and KU41 were identified as F. oxysporum f. sp. niveum based on the aligned sequences of tef1-α and molecular phylogenetic exploration by the maximum likelihood method. To the best of our knowledge, this is the first report of F. oxysporum f. sp. niveum as a causative pathogen of Fusarium wilt disease of watermelon in Malaysia. Malaysia enables to export watermelon all-year-round in different countries like Singapore, Hong-Kong, The United Arab Emirates (UAE), and Netherlands. The outburst of this destructive soil-borne fungal pathogen could cause hindrance to watermelon cultivation in Malaysia. Thus, growers need to choice multiple management tactics such as resistant varieties, cultural practices (soil amendments and solarization), grafting, cover crops and fungicide application to control this new pathogen.
  18. Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Mohd Hata E, et al.
    Plant Dis, 2021 Aug 02.
    PMID: 34340562 DOI: 10.1094/PDIS-05-21-1027-PDN
    Watermelon (Citrullus lanatus) accounts for almost 13% of all tropical fresh fruit production in Malaysia. They are grown, mostly in Johor, Kedah, Kelantan, Pahang, and Terengganu areas of Malaysia on 10,406 ha and yielding 172,722 Mt. In 2019, a new fruit rot disease was observed in two major production areas in Peninsular Malaysia. Disease symptoms included water-soaked brown lesions on the fruit surface in contact with the soil. The lesions enlarged gradually and ultimately covered the whole fruit with white mycelium leading to internal fruit decay. Disease surveys were conducted in December 2019 and November 2020 in fields at Kuantan, Pahang and Serdang, Selangor. Disease incidence was 10% in 2019 and 15% in 2020. Infected fruits were collected and washed under running tap water to wash off adhering soil and debris. Fruit tissue sections 1 to 2 cm in length were surface sanitized with 0.6% sodium hypochlorite (NaOCl) for 3 min. and washed twice with sterile distilled water. The disinfected air-dried tissues were then transferred onto potato dextrose agar (PDA) media and incubated at 25±2℃ for 3 days. Fungal colonies with whitish mycelium and pink pigment isolated using single spore culture. The pure cultures were placed onto carnation leaf agar (CLA), and the culture plates were incubated at 25±2℃ for 15 days for morphological characterization. On CLA, macroconidia were produced from monophialides on branched conidiophores in orange sporodochia. Macroconindia were thick-walled, strong dorsiventral curvature, 5 to 7 septate with a tapered whip-liked pointed apical cell and characteristic foot-shaped basal cell, 21.9 to 50.98 μm long and 2.3 to 3.60 μm wide. Typical verrucose thick chlamydospores with rough walls were profuse in chains or clumps, sub-globose or ellipsoidal. Based on morphological characteristics they were identified as Fusarium equiseti (Leslie and Summerell 2006). Molecular identification of both U4-1 and N9-1 pure culture isolates were carried out using two primer pair sets; internal transcribed spacer (ITS) ITS-1/ ITS-4 and translation elongation factor 1 alpha (TEF1-α) (EF-1/EF-2). A Blastn analysis of the ITS gene sequence of U4-1(MW362286) and N9-1 (MW362287) showed >99% similarity index to the reference gene sequence of F. equiseti isolate 19MSr-B3-4 (LC514690). The TEF1-α sequences of U4-1 (accession no. MW839563) and N9-1 (accession no. MW839564) showed 100% identity; with an e-value of zero, to the reference gene sequence of F. equiseti isolate URM: 7561 (accession no. LS398490). Each isolate also had a >99% identity with isolate NRRL 34070 (accession no. GQ505642) in Fusarium MLST database that belongs to the F. incarnatum-equiseti species complex (O'Donnell et al. 2015). Based on phylogenetic analysis of the aligned sequences (TEF1-α) by the maximum likelihood method, the U4-1 and N9-1 isolates were confirmed to be F. equiseti as was reported in Georgia, USA (Li and Ji 2015) and in Harbin, Heilongjiang Province, China (Li et al. 2018). Finally, the two pure culture isolates of U4-1 and N9-1 were used to fulfill Koch's postulates. Stab inoculations of five healthy watermelon fruits (cv. 345-F1 hybrid seedless round watermelon) were performed with a microconidial suspension of individual isolates (4x106 spores/mL). Five control fruits were stabbed with double distilled water. The inoculated fruits were incubated under 95% relative humidity at a temperature of 25±2℃ for 48 h followed by additional incubation inside an incubator at 25±2℃ for 8 days. Ten days post-inoculation, the control fruits showed no disease symptoms. However, inoculated fruits exhibited typical symptoms of fruit rot disease like water-soaked brown lesions, white mycelium on the fruit surface and internal fruit decay, which is similar to the farmer's field infected fruits. The suspected pathogen was successfully re-isolated from the symptomatic portion of inoculated fruit and morphologically identified for verification. To our knowledge, this is the first report of F. equiseti causing fruit rot of watermelon in Malaysia. Malaysia exports watermelon year-round to many countries around the world. The outbreak of this new fruit rot disease could potentially pose a concern to watermelon cultivation in Malaysia.
  19. Ray JD, Subandiyah S, Rincon-Florez VA, Prakoso AB, Mudita IW, Carvalhais LC, et al.
    Plant Dis, 2021 Oct;105(10):2792-2800.
    PMID: 33973808 DOI: 10.1094/PDIS-01-21-0149-RE
    Blood disease in bananas caused by Ralstonia syzygii subsp. celebesensis is a bacterial wilt causing significant crop losses in Indonesia and Malaysia. Disease symptoms include wilting of the plant and red-brown vascular staining, internal rot, and discoloration of green banana fruit. There is no known varietal resistance to this disease in the Musa genus, although variation in susceptibility has been observed, with the popular Indonesian cooking banana variety Kepok being highly susceptible. This study established the current geographic distribution of Blood disease in Indonesia and confirmed the pathogenicity of isolates by Koch's postulates. The long-distance distribution of the disease followed an arbitrary pattern indicative of human-assisted movement of infected banana materials. In contrast, local or short-distance spread radiated from a single infection source, indicative of dispersal by insects and possibly contaminated tools, water, or soil. The rapid expansion of its geographical range makes Blood disease an emerging threat to banana production in Southeast Asia and beyond.
  20. Hassan IR, Omar D, Amit S, Ismail SI
    Plant Dis, 2021 Oct 05.
    PMID: 34609207 DOI: 10.1094/PDIS-04-21-0704-PDN
    Water hyacinth (Eichhornia crassipes) is a free-floating aquatic plant and is also widely cultivated as an aquatic ornamental plant in Malaysia. In June 2018, a severe foliar disease with typical leaf blight symptoms were observed on leaves of water hyacinth plants (approximately 50%) in waterways adjacent to two rice fields located at Tanjung Karang and Sungai Besar, Selangor province, Malaysia. Symptoms appeared irregular necrotic lesions with concentric rings, later lesions expanded to entire leaves and became blighted. Twenty symptomatic leaves were collected from two sampling locations. Symptomatic leaf tissue was cut into small pieces (5 × 5 mm), surface sterilized with 0.5% sodium hypochlorite (NaOCl) for 2 min, rinsed three times with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 25 °C with a 12-h light/dark cycle for 7 days. Twenty single-spore isolates were recovered from sampled leaves, all isolates exhibited Paramyrothecium-like morphology and two representative isolates, PR1 and PR2 were used for further studies. Fungal colonies were initially white aerial mycelia with sporodochia bearing olivaceous green conidial masses formed on PDA after 5 days of incubation. Conidiogenous cells were phialidic, hyaline, smooth, straight to slightly curved, 13 to 20 × 1.0 to 1.8 μm and setae were absent. Conidia were aseptate, hyaline to pale green, smooth, cylindrical to ellipsoidal with rounded ends, and measured 5.8 to 8.0 μm × 1.8 to 2.2 μm (n=50). These morphological characteristics were consistent with the description of Paramyrothecium roridum (Tode) L. Lombard & Crous (Lombard et al. 2016). Total genomic DNA of the isolates was extracted from fresh mycelium using DNeasy Plant Mini kit (Qiagen, USA). The internal transcribed spacer (ITS) and calmodulin (cmdA) gene regions were amplified using the ITS5/ITS4 (White et al.1990) and CAL-228F/CAL2Rd primer sets (Carbone and Kohn 1999; Groenewald et al., 2013), respectively. BLASTn analysis showed that the ITS and cmdA sequences of the isolates were 100% identity with Paramyrothecium roridum ex-epitype strain CBS 357.89 (GenBank accession nos. KU846300 and KU846270), respectively. The resulting sequences were deposited in GenBank (ITS: Accession nos. MW850370, MW850371; cmdA Accession nos. MW854363, MW854364). Pathogenicity tests of the two isolates were performed by spray inoculation on healthy leaves of each five potted water hyacinth plants using a 3-ml conidial suspension (1 × 106 conidia/ml) produced on 7-day-old PDA cultures incubated at 25 °C with a 12-h light/dark cycle. Five potted water hyacinth plants inoculated with sterile water served as controls. Inoculated plants were covered with plastic bags for 48 h to maintain high humidity and kept in a growth chamber for 2 weeks at 25 ± 1°C, 95% relative humidity and a 12-h light/dark period. The experiment was repeated twice. Eight days post-inoculation, symptoms on inoculated leaves developed necrotic brown lesions similar to those observed in the field, while control leaves remained asymptomatic. After 2 weeks of inoculation, lesions enlarged into severe blighting until all leaves died. Paramyrothecium roridum was re-isolated from randomly selected symptomatic tissues and verified by morphology and sequencing of ITS (MZ675387, MZ706462) and cmdA (MZ686706, MZ712041) loci, confirming Koch's postulates. The fungus was not re-isolated from non-inoculated control plants. Pa. roridum is distributed on a wide range of plants (Farr and Rossman 2021) and has been reported to cause leaf spot of water hyacinth in Nigeria (Okunowo et al. 2013) and Sri Lanka (Adikaram and Yakandawala 2020). To our knowledge, this is the first report of Pa. roridum causing leaf blight of water hyacinth in Malaysia. This disease is an emerging threat to water hyacinth and it reduces the leaf quality, therefore, appropriate management should be developed to control this disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links