Displaying publications 61 - 76 of 76 in total

Abstract:
Sort:
  1. Sumaila UR, Skerritt DJ, Schuhbauer A, Villasante S, Cisneros-Montemayor AM, Sinan H, et al.
    Science, 2021 10 29;374(6567):544.
    PMID: 34709891 DOI: 10.1126/science.abm1680
    [Figure: see text].
  2. Brooks CM, Ainley DG, Jacquet J, Chown SL, Pertierra LR, Francis E, et al.
    Science, 2022 Nov 04;378(6619):477-479.
    PMID: 36264826 DOI: 10.1126/science.add9480
    Climate change and fishing present dual threats.
  3. Xia C, Lam SS, Zhong H, Fabbri E, Sonne C
    Science, 2022 Nov 25;378(6622):842.
    PMID: 36423283 DOI: 10.1126/science.ade9069
  4. Johnson AF, Caillat M, Verutes GM, Peter C, Junchompoo C, Long V, et al.
    Science, 2017 Mar 10;355(6329):1031-1032.
    PMID: 28280175 DOI: 10.1126/science.aam9153
  5. Davidar P, Sharma R, de Silva S, Campos-Arceiz A, Goossens B, Puyravaud JP, et al.
    Science, 2023 Feb 24;379(6634):765.
    PMID: 36821683 DOI: 10.1126/science.adg7470
  6. da Silva CFA, Virgüez E, Eker S, Zdenek CN, Bergh C, Gerarduzzi C, et al.
    Science, 2023 Apr 07;380(6640):30-32.
    PMID: 37023192 DOI: 10.1126/science.adh8182
  7. Sonne C, Bank MS, Jenssen BM, Cieseielski TM, Rinklebe J, Lam SS, et al.
    Science, 2023 Mar 03;379(6635):887-888.
    PMID: 36862788 DOI: 10.1126/science.adh0934
  8. Hoy ZX, Woon KS, Chin WC, Van Fan Y, Yoo SJ
    Science, 2023 Nov 17;382(6672):797-800.
    PMID: 37972189 DOI: 10.1126/science.adg3177
    No global analysis has considered the warming that could be averted through improved solid waste management and how much that could contribute to meeting the Paris Agreement's 1.5° and 2°C pathway goals or the terms of the Global Methane Pledge. With our estimated global solid waste generation of 2.56 to 3.33 billion tonnes by 2050, implementing abrupt technical and behavioral changes could result in a net-zero warming solid waste system relative to 2020, leading to 11 to 27 billion tonnes of carbon dioxide warming-equivalent emissions under the temperature limits. These changes, however, require accelerated adoption within 9 to 17 years (by 2033 to 2041) to align with the Global Methane Pledge. Rapidly reducing methane, carbon dioxide, and nitrous oxide emissions is necessary to maximize the short-term climate benefits and stop the ongoing temperature rise.
  9. Simpfendorfer CA, Heithaus MR, Heupel MR, MacNeil MA, Meekan M, Harvey E, et al.
    Science, 2023 Jun 16;380(6650):1155-1160.
    PMID: 37319199 DOI: 10.1126/science.ade4884
    A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.
  10. Heim AB, Bharani T, Konstantinides N, Powell JR, Srivastava S, Cao XE, et al.
    Science, 2023 Jul 14;381(6654):162-163.
    PMID: 37440643 DOI: 10.1126/science.adi8740
  11. Sonne C, Ciesielski TM, Jenssen BM, Lam SS, Zhong H, Dietz R
    Science, 2023 Aug 25;381(6660):843-844.
    PMID: 37616344 DOI: 10.1126/science.adj4244
  12. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al.
    Science, 2022 Aug 26;377(6609):960-966.
    PMID: 35881005 DOI: 10.1126/science.abp8337
    Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
  13. Li X, Lam SS, Xia C, Zhong H, Sonne C
    Science, 2023 Dec;382(6674):1007.
    PMID: 38033061 DOI: 10.1126/science.adl6721
  14. Meijaard E, Erman A, Ancrenaz M, Goossens B
    Science, 2024 Jan 19;383(6680):267.
    PMID: 38236988 DOI: 10.1126/science.adn3857
  15. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
  16. Ye Q, Gao Y, Patel RJ, Cao B, Li A, Powell J, et al.
    Science, 2024 Apr 05;384(6691):26-28.
    PMID: 38574143 DOI: 10.1126/science.adp2180
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links