Displaying publications 61 - 80 of 127 in total

Abstract:
Sort:
  1. Yusof NS, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M
    Ultrason Sonochem, 2016 Mar;29:568-76.
    PMID: 26142078 DOI: 10.1016/j.ultsonch.2015.06.013
    Acoustic cavitation in a liquid medium generates several physical and chemical effects. The oscillation and collapse of cavitation bubbles, driven at low ultrasonic frequencies (e.g., 20 kHz), can generate strong shear forces, microjets, microstreaming and shockwaves. Such strong physical forces have been used in cleaning and flux improvement of ultrafiltration processes. These physical effects have also been shown to deactivate pathogens. The efficiency of deactivation of pathogens is not only dependent on ultrasonic experimental parameters, but also on the properties of the pathogens themselves. Bacteria with thick shell wall are found to be resistant to ultrasonic deactivation process. Some evidence does suggest that the chemical effects (radicals) of acoustic cavitation are also effective in deactivating pathogens. Another aspect of cleaning, namely, purification of water contaminated with organic and inorganic pollutants, has also been discussed in detail. Strong oxidising agents produced within acoustic cavitation bubbles could be used to degrade organic pollutants and convert toxic inorganic pollutants to less harmful substances. The effect of ultrasonic frequency and surface activity of solutes on the sonochemical degradation efficiency has also been discussed in this overview.
  2. Tao Y, Han Y, Liu W, Peng L, Wang Y, Kadam S, et al.
    Ultrason Sonochem, 2019 Apr;52:193-204.
    PMID: 30514598 DOI: 10.1016/j.ultsonch.2018.11.018
    In this work, sonication (20-kHz) was conducted to assist the biosorption of phenolics from blueberry pomace extracts by brewery waste yeast biomass. The adsorption capacity of yeast increased markedly under ultrasonic fields. After sonication at 394.2 W/L and 40 °C for 120 min, the adsorption capacity was increased by 62.7% compared with that under reciprocating shaking. An artificial neural network was used to model and visualize the effects of different parameters on yeast biosorption capacity. Both biosorption time and acoustic energy density had positive influences on yeast biosorption capacity, whereas no clear influence of temperature on biosorption process was observed. Regarding the mechanism of ultrasound-enhanced biosorption process, the amino and carboxyl groups in yeast were considered to be associated with the yeast biosorption property. Meanwhile, ultrasound promoted the decline of the structure order of yeast cells induced by phenolic uptake. The interactions between yeast cells and phenolics were also affected by the structures of phenolics. Moreover, the mass transfer process was simulated by a surface diffusional model considering the ultrasound-induced yeast cell disruption. The modeling results showed that the external mass transfer coefficient in liquid phase and the surface diffusion coefficient under sonication at 394.2 W/L and 40 °C were 128.5% and 74.3% higher than that under reciprocating shaking, respectively.
  3. Alzorqi I, Ketabchi MR, Sudheer S, Manickam S
    Ultrason Sonochem, 2016 Jul;31:71-84.
    PMID: 26964925 DOI: 10.1016/j.ultsonch.2015.12.004
    Polysaccharides of β-d-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-d-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design - CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-d-glucan-loaded nanoemulsions exhibited good stability over 90days under different storage conditions (4°C and 25°C). The studies using palm olein based β-d-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-d-glucan.
  4. Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA
    Ultrason Sonochem, 2017 Jul;37:360-367.
    PMID: 28427644 DOI: 10.1016/j.ultsonch.2017.01.024
    Nanofluids are promising in many fields, including engineering and medicine. Stability deterioration may be a critical constraint for potential applications of nanofluids. Proper ultrasonication can improve the stability, and possibility of the safe use of nanofluids in different applications. In this study, stability properties of TiO2-H2O nanofluid for varying ultrasonication durations were tested. The nanofluids were prepared through two-step method; and electron microscopies, with particle size distribution and zeta potential analyses were conducted for the evaluation of their stability. Results showed the positive impact of ultrasonication on nanofluid dispersion properties up to some extent. Ultrasonication longer than 150min resulted in re-agglomeration of nanoparticles. Therefore, ultrasonication for 150min was the optimum period yielding highest stability. A regression analysis was also done in order to relate the average cluster size and ultrasonication time to zeta potential. It can be concluded that performing analytical imaging and colloidal property evaluation during and after the sample preparation leads to reliable insights.
  5. Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ
    Ultrason Sonochem, 2023 Mar 15;95:106371.
    PMID: 36934677 DOI: 10.1016/j.ultsonch.2023.106371
    The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.
  6. Sodipo BK, Aziz AA
    Ultrason Sonochem, 2020 Jun;64:104856.
    PMID: 31889660 DOI: 10.1016/j.ultsonch.2019.104856
    Optimization of sonochemical method of functionalizing a Silane coupling agent, Amino-Silane on Superparamagnetic Iron Oxide Nanoparticles (SPION) using Central Composite Design is reported. The Amino-Silane is grafted on the SPION in an iced bath environment using a Vibra-Cell 20 kHz ultrasonic irradiator with 13 mm diameter horn. Throughout the experiment amplitude of the ultrasonic device is maintained at 47%. The percentage atomic compositions of various APTES elements which bind to the SPION due to the ultrasonic irradiation were determined using X-ray photoelectron spectrometer (XPS). The influence of ultrasonic irradiation time and amount of APTES required for facile, rapid and effective functionalization of Organo-metallic compound on SPION are optimized. The optimized sonication time and amount of APTES are 8.49 min and 3.40 ml, respectively. The predicted results were validated with experimental data. Using the optimized values APTES were functionalized on the SPION experimentally and the results were compared. The experimental results validate the predicted data. Results show that very minimum sonication time is required for effective grafting of APTES on SPION.
  7. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
  8. Sodipo BK, Aziz AA
    Ultrason Sonochem, 2018 Jan;40(Pt A):837-840.
    PMID: 28946493 DOI: 10.1016/j.ultsonch.2017.08.040
    Superparamagnetic iron oxide nanoparticles (SPION) are material of interest for biomedical research and related applications. Recently, several works have reported facile sonochemical method of functionalizing nanoparticles with organic coupling agents. Herein, we present the influence of ultrasonic irradiation on the rate of functionalization of 3-amino propyl triethoxyl silane (APTES) on SPION. The effect of sonication on the process is investigated by varying the sonication period between 1 and 20min. Grafting of the organo-metallic molecules on SPION is demonstrated through FTIR and XPS. The results show that in one minute, organo-silane compound can be functionalized onto SPION through unique conditions generated from ultrasonic irradiation. The XPS survey spectra of the as-synthesized APTES-SPION at different sonication periods revealed that absorbed energy due to silanization reactions in all the samples appeared at same peaks. The percentage atomic concentrations of all the elements present in the as-synthesized APTES-SPION are determined by the software CASAXPS. The result demonstrated that highest percentage atomic concentration is observed at the one minute sonication period.
  9. Rayathulhan R, Sodipo BK, Aziz AA
    Ultrason Sonochem, 2017 Mar;35(Pt A):270-275.
    PMID: 27756524 DOI: 10.1016/j.ultsonch.2016.10.002
    ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction.
  10. Hindryawati N, Maniam GP
    Ultrason Sonochem, 2015 Jan;22:454-62.
    PMID: 24842471 DOI: 10.1016/j.ultsonch.2014.04.011
    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation.
  11. Eh AL, Teoh SG
    Ultrason Sonochem, 2012 Jan;19(1):151-9.
    PMID: 21715212 DOI: 10.1016/j.ultsonch.2011.05.019
    Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11±0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81±0.81% with 3.19±0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27±0.52% with β-carotene constituted 1.73±0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.
  12. Sodipo BK, Abdul Aziz A
    Ultrason Sonochem, 2015 Mar;23:354-9.
    PMID: 25315418 DOI: 10.1016/j.ultsonch.2014.09.011
    A non-seeded method of incorporating superparamagnetic iron oxide nanoparticles (SPION) into silica nanoparticles is presented. Mixture of both SPION and silica nanoparticles was ultrasonically irradiated. The collapsed bubbles and shockwave generated from the ultrasonic irradiation produce tremendous force that caused inelastic collision and incorporation of SPION into the silica. Physicochemical analyses using transmission electron microscope (TEM), electronic spectroscopic imaging (ESI), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy demonstrated the formation of SPION/silica composite nanoparticles. The prepared composite nanoparticles exhibited superparamagnetic behaviour and nearly 70% of the initial saturation magnetization (Ms) of the SPION was retained. The presence and reactivity of the silica were demonstrated via assembling decanethiol monolayer on the composite nanoparticles. The silanol group of the silica provided the binding site for the alkyl group in the decanethiol molecules. Therefore, the thiol moiety became the terminal and functional group on the magnetic composite nanoparticles.
  13. Chu JK, Tiong TJ, Chong S, Asli UA, Yap YH
    Ultrason Sonochem, 2021 Dec;80:105818.
    PMID: 34781044 DOI: 10.1016/j.ultsonch.2021.105818
    Recently, multi-frequency systems were reported to improve performance in power ultrasound applications. In line with this, digital prototyping of multi-frequency sonoreactors also started gaining interest. However, the conventional method of simulating multi-frequency acoustic pressure fields in the time-domain led to many challenges and limitations. In this study, a multi-frequency sonoreactor was characterised using frequency domain simulations in 2-D. The studied system consists of a hexagonal sonoreactor capable of operating at 28, 40 and 70 kHz. Four frequency combinations were studied: 28-40, 28-70, 40-70 and 28-40-70 kHz. A semi-empirical, modified Commander and Prosperetti model was used to describe the bubbly-liquid effects in the sonoreactor. The root-mean-squared acoustic pressure was compared against experimental validation results using sonochemiluminescence (SCL) images and was noted to show good qualitative agreement with SCL results in terms of antinode predictions. The empirical phase speed calculated from SCL measurements was found to be important to circumvent uncertainties in bubble parameter specifications which reduces error in the simulations. Additionally, simulation results also highlighted the importance of geometry in the context of optimising the standing wave magnitudes for each working frequency due to the effects of constructive and destructive interference.
  14. Sajjadi B, Abdul Aziz AR, Ibrahim S
    Ultrason Sonochem, 2015 Jan;22:463-73.
    PMID: 24981808 DOI: 10.1016/j.ultsonch.2014.06.004
    The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties.
  15. Dheyab MA, Aziz AA, Jameel MS, Khaniabadi PM, Mehrdel B
    Ultrason Sonochem, 2020 Jun;64:104865.
    PMID: 31983562 DOI: 10.1016/j.ultsonch.2019.104865
    Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (Fe3O4 NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the Fe3O4 surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of Fe3O4 NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on Fe3O4 core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.
  16. Mahdi T, Ahmad A, Ripin A, Abdullah TA, Nasef MM, Ali MW
    Ultrason Sonochem, 2015 May;24:184-92.
    PMID: 25432400 DOI: 10.1016/j.ultsonch.2014.11.005
    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system.
  17. Gumel AM, Annuar MS, Chisti Y
    Ultrason Sonochem, 2013 May;20(3):937-47.
    PMID: 23231942 DOI: 10.1016/j.ultsonch.2012.09.015
    Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50°C (7.9×10(-3)Ms(-1)), sonic power intensity of 2.6×10(3)Wm(-2) and dissipated energy of 130.4Jml(-1). Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra™ were lower at 2.4×10(-4), 1.3×10(-4) and 3.5×10(-4)Ms(-1), respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15×10(-3)s(-1)M(-1) for Novozym 435-1.48×10(-3)s(-1)M(-1) for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9×10(3) to 4.5×10(3)Wm(-2) resulted in an increased in acoustic pressure (P(a)) from 3.7×10(8) to 5.7×10(8)Nm(-2) almost 2.4-3.7 times greater than the acoustic pressure (1.5×10(8)Nm(-2)) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6×10(3)-1.5×10(4)ms(-2) was calculated i.e. approximately 984-1500 times greater than under the action of gravity.
  18. Manickam S, Sivakumar K, Pang CH
    Ultrason Sonochem, 2020 Dec;69:105258.
    PMID: 32702637 DOI: 10.1016/j.ultsonch.2020.105258
    O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.
  19. Baig Z, Mamat O, Mustapha M, Mumtaz A, Munir KS, Sarfraz M
    Ultrason Sonochem, 2018 Jul;45:133-149.
    PMID: 29705306 DOI: 10.1016/j.ultsonch.2018.03.007
    The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis.
  20. Kim E, Cui M, Jang M, Park B, Son Y, Khim J
    Ultrason Sonochem, 2014 Jul;21(4):1504-11.
    PMID: 24508490 DOI: 10.1016/j.ultsonch.2014.01.003
    In this study, the effect of the dimensions of the bottom plate and liquid height was investigated for high-frequency sonoreactors under a vertically irradiated system. The dimensions of the bottom plate did not significantly influence sonochemical activity considering power density. However, as the bottom plate was increased in size, the hydroxyl radical generation rate decreased because of a decrease in power density. It is therefore recommended that sonoreactors with bottom-plate dimensions close to those of the ultrasonic transducer module be used. Liquid height had a significant effect on sonochemical activity, but the trend of the activity considering power density changed as the initial pollutant concentration changed. In the case of low initial concentration of As(III) (1 mg/L), the maximum cavitation yield for As(III) oxidation was observed at liquid heights of 150 mm.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links