Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Suhaimi FW, Hassan Z, Mansor SM, Müller CP
    Neurosci Lett, 2021 02 06;745:135632.
    PMID: 33444671 DOI: 10.1016/j.neulet.2021.135632
    Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.
    Matched MeSH terms: Electroencephalography/methods
  2. Seal A, Reddy PPN, Chaithanya P, Meghana A, Jahnavi K, Krejcar O, et al.
    Comput Math Methods Med, 2020;2020:8303465.
    PMID: 32831902 DOI: 10.1155/2020/8303465
    Human emotion recognition has been a major field of research in the last decades owing to its noteworthy academic and industrial applications. However, most of the state-of-the-art methods identified emotions after analyzing facial images. Emotion recognition using electroencephalogram (EEG) signals has got less attention. However, the advantage of using EEG signals is that it can capture real emotion. However, very few EEG signals databases are publicly available for affective computing. In this work, we present a database consisting of EEG signals of 44 volunteers. Twenty-three out of forty-four are females. A 32 channels CLARITY EEG traveler sensor is used to record four emotional states namely, happy, fear, sad, and neutral of subjects by showing 12 videos. So, 3 video files are devoted to each emotion. Participants are mapped with the emotion that they had felt after watching each video. The recorded EEG signals are considered further to classify four types of emotions based on discrete wavelet transform and extreme learning machine (ELM) for reporting the initial benchmark classification performance. The ELM algorithm is used for channel selection followed by subband selection. The proposed method performs the best when features are captured from the gamma subband of the FP1-F7 channel with 94.72% accuracy. The presented database would be available to the researchers for affective recognition applications.
    Matched MeSH terms: Electroencephalography/methods*
  3. Lim KS, Fong SL, Thuy Le MA, Ahmad Bazir S, Narayanan V, Ismail N, et al.
    Epilepsy Res, 2020 05;162:106298.
    PMID: 32172144 DOI: 10.1016/j.eplepsyres.2020.106298
    INTRODUCTION: Video-EEG monitoring is one of the key investigations in epilepsy pre-surgical evaluation but limited by cost. This study aimed to determine the efficacy and safety of a 48-hour (3-day) video EEG monitoring, with rapid pre-monitoring antiepileptic drugs withdrawal.

    MATERIAL AND METHODS: This is a retrospective study of epilepsy cases with VEM performed in University Malaya Medical Center (UMMC), Kuala Lumpur, from January 2012 till August 2016.

    RESULTS: A total of 137 cases were included. The mean age was 34.5 years old (range 15-62) and 76 (55.8 %) were male. On the first 24 -h of recording (D1), 81 cases (59.1 %) had seizure occurrence, and 109 (79.6 %) by day 2 (D2). One-hundred and nine VEMs (79.6 %) were diagnostic, in guiding surgical decision or further investigations. Of these, 21 had less than 2 seizures recorded in the first 48 h but were considered as diagnostic because of concordant interictal ± ictal activities, or a diagnosis such as psychogenic non-epileptic seizure was made. Twenty-eight patients had extension of VEM for another 24-48 h, and 11 developed seizures during the extension period. Extra-temporal lobe epilepsy and seizure frequency were significant predictors for diagnostic 48 -h VEM. Three patients developed complications, including status epilepticus required anaesthetic agents (1), seizure clusters (2) with postictal psychosis or dysphasia, and all recovered subsequently.

    CONCLUSIONS: 48-h video EEG monitoring is cost-effective in resource limited setting.

    Matched MeSH terms: Electroencephalography/methods*
  4. Javed E, Faye I, Malik AS, Abdullah JM
    J Neurosci Methods, 2017 11 01;291:150-165.
    PMID: 28842191 DOI: 10.1016/j.jneumeth.2017.08.020
    BACKGROUND: Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact.

    METHODS: We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact.

    RESULTS: The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals.

    COMPARISON WITH EXISTING METHODS: Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy.

    CONCLUSIONS: The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.

    Matched MeSH terms: Electroencephalography/methods*
  5. Motlagh F, Ibrahim F, Rashid R, Shafiabady N, Seghatoleslam T, Habil H
    Psychopharmacology (Berl), 2018 Nov;235(11):3273-3288.
    PMID: 30310960 DOI: 10.1007/s00213-018-5035-0
    Methadone as the most prevalent opioid substitution medication has been shown to influence the neurophysiological functions among heroin addicts. However, there is no firm conclusion on acute neuroelectrophysiological changes among methadone-treated subjects as well as the effectiveness of methadone in restoring brain electrical abnormalities among heroin addicts. This study aims to investigate the acute and short-term effects of methadone administration on the brain's electrophysiological properties before and after daily methadone intake over 10 weeks of treatment among heroin addicts. EEG spectral analysis and single-trial event-related potential (ERP) measurements were used to investigate possible alterations in the brain's electrical activities, as well as the cognitive attributes associated with MMN and P3. The results confirmed abnormal brain activities predominantly in the beta band and diminished information processing ability including lower amplitude and prolonged latency of cognitive responses among heroin addicts compared to healthy controls. In addition, the alteration of EEG activities in the frontal and central regions was found to be associated with the withdrawal symptoms of drug users. Certain brain regions were found to be influenced significantly by methadone intake; acute effects of methadone induction appeared to be associative to its dosage. The findings suggest that methadone administration affects cognitive performance and activates the cortical neuronal networks, resulting in cognitive responses enhancement which may be influential in reorganizing cognitive dysfunctions among heroin addicts. This study also supports the notion that the brain's oscillation powers and ERPs can be utilized as neurophysiological indices for assessing the addiction treatment traits.
    Matched MeSH terms: Electroencephalography/methods
  6. Mumtaz W, Saad MNBM, Kamel N, Ali SSA, Malik AS
    Artif Intell Med, 2018 01;84:79-89.
    PMID: 29169647 DOI: 10.1016/j.artmed.2017.11.002
    BACKGROUND: The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics.

    METHOD: In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used.

    RESULTS: The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95.

    CONCLUSION: The SL features could be utilized as objective markers to screen the AUD patients and healthy controls.

    Matched MeSH terms: Electroencephalography/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links