METHODOLOGY: We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.
RESULTS: We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.
CONCLUSION: We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.
METHODS: A search of four databases was conducted: Web of Science, PubMed, Dimensions, and Scopus for research papers dated between January 2016 and September 2021. The search keywords are 'data mining', 'machine learning' in combination with 'suicidal behaviour', 'suicide', 'suicide attempt', 'suicidal ideation', 'suicide plan' and 'self-harm'. The studies that used machine learning techniques were synthesized according to the countries of the articles, sample description, sample size, classification tasks, number of features used to develop the models, types of machine learning techniques, and evaluation of performance metrics.
RESULTS: Thirty-five empirical articles met the criteria to be included in the current review. We provide a general overview of machine learning techniques, examine the feature categories, describe methodological challenges, and suggest areas for improvement and research directions. Ensemble prediction models have been shown to be more accurate and useful than single prediction models.
CONCLUSIONS: Machine learning has great potential for improving estimates of future suicidal behaviour and monitoring changes in risk over time. Further research can address important challenges and potential opportunities that may contribute to significant advances in suicide prediction.
METHOD: In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used.
RESULTS: The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95.
CONCLUSION: The SL features could be utilized as objective markers to screen the AUD patients and healthy controls.
OBJECTIVES: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect the health conditions of asymptomatic carriers.
METHODS: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to produce a new dataset involving 56 patients with different health conditions and can be used to check asymptomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new decision matrix depending on the intersection between 'multi-laboratory criteria' and 'COVID-19 patient list'. In the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in the third phase. Finally, objective validation is performed.
RESULTS: The patients are prioritised based on the selected criteria in descending order of health situation starting from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the patients are classified into four equal groups and showed significant differences in their scores, indicating the validity of ranking.
CONCLUSIONS: This study implies and discusses the numerous benefits of the suggested framework in detecting/recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, managing patient care and optimising clinical prediction rule.
OBJECTIVE: This research aims to provide a literature review study and an in-depth analysis to (1) investigate the procedure and roles of remote diagnosis in telemedicine; (2) review the technical tools and technologies used in remote diagnosis; (3) review the diseases diagnosed remotely in telemedicine; (4) compose a crossover taxonomy among diseases, technologies, and telemedicine; (5) present lists of input variables, vital signs, data and output decisions already applied in remote diagnosis; (6) Summarize the performance assessment measures utilized to assess and validate remote diagnosis models; and (7) identify and categorize open research issues while providing recommendations for future advancements in intelligent remote diagnosis within telemedicine systems.
METHODS: A systematic search was conducted using online libraries for articles published from 1 January 2016 to 13 September 2023 in IEEE, PubMed, Science Direct, Springer, and Web of Science. Notably, searches were limited to articles in the English language. The papers examine remote diagnosis in telemedicine, the technologies employed for this function, and the ramifications of diagnosing patients outside hospital settings. Each selected study was synthesized to furnish proof about the implementation of remote diagnostics in telemedicine.
RESULTS: A new crossover taxonomy between the most important diagnosed diseases and technologies used for this purpose and their relationship with telemedicine tiers is proposed. The functions executed at each tier are elucidated. Additionally, a compilation of diagnostic technologies is provided. Additionally, open research difficulties, advantages of remote diagnosis in telemedicine, and suggestions for future research prospects that require attention are systematically organized and presented.
CONCLUSIONS: This study reviews the role of remote diagnosis in telemedicine, with a focus on key technologies and current approaches. This study highlights research challenges, provides recommendations for future directions, and addresses research gaps and limitations to provide a clear vision of remote diagnosis in telemedicine. This study emphasizes the advantages of existing research and opens the possibility for new directions and smart healthcare solutions.