Affiliations 

  • 1 School of Microelectronics, Tianjin University, Tianjin, China
  • 2 School of Microelectronics, Tianjin University, Tianjin, China. Electronic address: guanxin@tju.edu.cn
  • 3 Institute of Innovation and Circular Economy, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; UKM-Graduate School of Business, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor, Malaysia; Department of Industrial Engineering, Khon Kaen University, 40002, Thailand. Electronic address: tsengminglang@asia.edu.tw
Artif Intell Med, 2024 Feb;148:102776.
PMID: 38325925 DOI: 10.1016/j.artmed.2024.102776

Abstract

This study proposes a deep convolutional neural network for the automatic segmentation of glioblastoma brain tumors, aiming sat replacing the manual segmentation method that is both time-consuming and labor-intensive. There are many challenges for automatic segmentation to finely segment sub-regions from multi-sequence magnetic resonance images because of the complexity and variability of glioblastomas, such as the loss of boundary information, misclassified regions, and subregion size. To overcome these challenges, this study introduces a spatial pyramid module and attention mechanism to the automatic segmentation algorithm, which focuses on multi-scale spatial details and context information. The proposed method has been tested in the public benchmarks BraTS 2018, BraTS 2019, BraTS 2020 and BraTS 2021 datasets. The Dice score on the enhanced tumor, whole tumor, and tumor core were respectively 79.90 %, 89.63 %, and 85.89 % on the BraTS 2018 dataset, respectively 77.14 %, 89.58 %, and 83.33 % on the BraTS 2019 dataset, and respectively 77.80 %, 90.04 %, and 83.18 % on the BraTS 2020 dataset, and respectively 83.48 %, 90.70 %, and 88.94 % on the BraTS 2021 dataset offering performance on par with that of state-of-the-art methods with only 1.90 M parameters. In addition, our approach significantly reduced the requirements for experimental equipment, and the average time taken to segment one case was only 1.48 s; these two benefits rendered the proposed network intensely competitive for clinical practice.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.