Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Alnawafleh TM, Radzi Y, Alshipli M, Oglat AA, Alflahat A
    Curr Med Imaging, 2024;20(1):e15734056309829.
    PMID: 39492762 DOI: 10.2174/0115734056309829240909095801
    The most common primary malignant brain tumor is glioblastoma. Glioblastoma Multiforme (GBM) diagnosis is difficult. However, image segmentation and registration methods may simplify and automate Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scan analysis. Medical practitioners and researchers can better identify and characterize glioblastoma tumors using this technology. Many segmentation and registration approaches have been proposed recently. Note that these approaches are not fully compiled. This review efficiently and critically evaluates the state-of-the-art segmentation and registration techniques for MRI and CT GBM images, providing researchers, medical professionals, and students with a wealth of knowledge to advance GBM imaging and inform decision-making. GBM's origins and development have been examined, along with medical imaging methods used to diagnose tumors. Image segmentation and registration were examined, showing their importance in this difficult task. Frequently encountered glioblastoma segmentation and registration issues were examined. Based on these theoretical foundations, recent image segmentation and registration advances were critically analyzed. Additionally, evaluation measures for analytical efforts were thoroughly reviewed.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  2. Ghobadi V, Ismail LI, Wan Hasan WZ, Ahmad H, Ramli HR, Norsahperi NMH, et al.
    Comput Biol Med, 2025 Feb;185:109459.
    PMID: 39642700 DOI: 10.1016/j.compbiomed.2024.109459
    The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  3. Huang B, Li H, Fujita H, Sun X, Fang Z, Wang H, et al.
    Comput Biol Med, 2024 Aug;178:108733.
    PMID: 38897144 DOI: 10.1016/j.compbiomed.2024.108733
    BACKGROUND AND OBJECTIVES: Liver segmentation is pivotal for the quantitative analysis of liver cancer. Although current deep learning methods have garnered remarkable achievements for medical image segmentation, they come with high computational costs, significantly limiting their practical application in the medical field. Therefore, the development of an efficient and lightweight liver segmentation model becomes particularly important.

    METHODS: In our paper, we propose a real-time, lightweight liver segmentation model named G-MBRMD. Specifically, we employ a Transformer-based complex model as the teacher and a convolution-based lightweight model as the student. By introducing proposed multi-head mapping and boundary reconstruction strategies during the knowledge distillation process, Our method effectively guides the student model to gradually comprehend and master the global boundary processing capabilities of the complex teacher model, significantly enhancing the student model's segmentation performance without adding any computational complexity.

    RESULTS: On the LITS dataset, we conducted rigorous comparative and ablation experiments, four key metrics were used for evaluation, including model size, inference speed, Dice coefficient, and HD95. Compared to other methods, our proposed model achieved an average Dice coefficient of 90.14±16.78%, with only 0.6 MB memory and 0.095 s inference speed for a single image on a standard CPU. Importantly, this approach improved the average Dice coefficient of the baseline student model by 1.64% without increasing computational complexity.

    CONCLUSION: The results demonstrate that our method successfully realizes the unification of segmentation precision and lightness, and greatly enhances its potential for widespread application in practical settings.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  4. Tian Y, Ahmad RB, Abdullah NAB
    PLoS One, 2025;20(2):e0318225.
    PMID: 39999207 DOI: 10.1371/journal.pone.0318225
    With the increasing demand for electricity, the safety and stability of power grids become paramount, highlighting the critical need for effective maintenance and inspection. Insulators, integral to power grid maintenance as protective devices on outdoor high-altitude conductors, are often subject to suboptimal image quality during drone-based inspections due to adverse weather conditions such as rain, snow, fog, and the challenges posed by sunlight, high-speed movement, and long-distance imaging. To address these challenges and achieve a more accurate inspection system, this manuscript introduces an insulator defect detection algorithm tailored for the low-quality images collected by drone-based imaging systems. Utilizing a patch diffusion model, high-quality images are obtained, enhancing the precision of insulator defect detection methods. Furthermore, to improve detection accuracy, we introduce an optimized DETR method that incorporates a Spatial Information Interaction Module to further strengthen the characteristics of minor defects. Additionally, a special convergence network is employed to augment the detection capabilities of the DETR. Experimental results demonstrate that our proposed insulator detection technique has achieved a detection accuracy of 95.8%, significantly outperforming existing defect detection methods in complex environments. It overcomes the drawbacks of traditional methods by employing sophisticated computational models, leading to more efficient, economical, and secure maintenance and inspection of power grids.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  5. Sambasivam G, Prabu Kanna G, Chauhan MS, Raja P, Kumar Y
    Sci Rep, 2025 Feb 27;15(1):7009.
    PMID: 40016508 DOI: 10.1038/s41598-025-90646-4
    Detecting cassava leaf disease is challenging because it is hard to identify diseases accurately through visual inspection. Even trained agricultural experts may struggle to diagnose the disease correctly which leads to potential misjudgements. Traditional methods to diagnose these diseases are time-consuming, prone to error, and require expert knowledge, making automated solutions highly preferred. This paper explores the application of advanced deep learning techniques to detect as well as classify cassava leaf diseases which includes EfficientNet models, DenseNet169, Xception, MobileNetV2, ResNet models, Vgg19, InceptionV3, and InceptionResNetV2. A dataset consisting of around 36,000 labelled images of cassava leaves, afflicted by diseases such as Cassava Brown Streak Disease, Cassava Mosaic Disease, Cassava Green Mottle, Cassava Bacterial Blight, and healthy leaves, was used to train these models. Further the images were pre-processed by converting them into grayscale, reducing noise using Gaussian filter, obtaining the region of interest using Otsu binarization, Distance transformation, as well as Watershed technique followed by employing contour-based feature selection to enhance model performance. Models, after fine-tuned with ADAM optimizer computed that among the tested models, the hybrid model (DenseNet169 + EfficientNetB0) had superior performance with classification accuracy of 89.94% while as EfficientNetB0 had the highest values of precision, recall, and F1score with 0.78 each. The novelty of the hybrid model lies in its ability to combine DenseNet169's feature reuse capability with EfficientNetB0's computational efficiency, resulting in improved accuracy and scalability. These results highlight the potential of deep learning for accurate and scalable cassava leaf disease diagnosis, laying the foundation for automated plant disease monitoring systems.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  6. Arif AS, Mansor S, Logeswaran R, Karim HA
    J Med Syst, 2015 Feb;39(2):5.
    PMID: 25628161 DOI: 10.1007/s10916-015-0200-z
    The massive number of medical images produced by fluoroscopic and other conventional diagnostic imaging devices demand a considerable amount of space for data storage. This paper proposes an effective method for lossless compression of fluoroscopic images. The main contribution in this paper is the extraction of the regions of interest (ROI) in fluoroscopic images using appropriate shapes. The extracted ROI is then effectively compressed using customized correlation and the combination of Run Length and Huffman coding, to increase compression ratio. The experimental results achieved show that the proposed method is able to improve the compression ratio by 400 % as compared to that of traditional methods.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  7. Sim KS, Ting HY, Lai MA, Tso CP
    J Microsc, 2009 Jun;234(3):243-50.
    PMID: 19493101 DOI: 10.1111/j.1365-2818.2009.03167.x
    An improvement to the previously proposed Canny optimization technique for scanning electron microscope image colorization is reported. The additional process is adaptive tuning, where colour tuning is performed adaptively, based on comparing the original luminance values with calculated luminance values. The complete adaptive Canny optimization technique gives significantly better mechanical contrast on scanning electron microscope grey-scale images than do existing methods.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  8. Sim KS, Thong LW, Ting HY, Tso CP
    J Microsc, 2010 Feb;237(2):111-8.
    PMID: 20096041 DOI: 10.1111/j.1365-2818.2009.03325.x
    Interpolation techniques that are used for image magnification to obtain more useful details of the surface such as morphology and mechanical contrast usually rely on the signal information distributed around edges and areas of sharp changes and these signal information can also be used to predict missing details from the sample image. However, many of these interpolation methods tend to smooth or blur out image details around the edges. In the present study, a Lagrange time delay estimation interpolator method is proposed and this method only requires a small filter order and has no noticeable estimation bias. Comparing results with the original scanning electron microscope magnification and results of various other interpolation methods, the Lagrange time delay estimation interpolator is found to be more efficient, more robust and easier to execute.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  9. Sudarshan VK, Mookiah MR, Acharya UR, Chandran V, Molinari F, Fujita H, et al.
    Comput Biol Med, 2016 Feb 1;69:97-111.
    PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006
    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  10. Chong JWR, Khoo KS, Chew KW, Vo DN, Balakrishnan D, Banat F, et al.
    Bioresour Technol, 2023 Feb;369:128418.
    PMID: 36470491 DOI: 10.1016/j.biortech.2022.128418
    The identification of microalgae species is an important tool in scientific research and commercial application to prevent harmful algae blooms (HABs) and recognizing potential microalgae strains for the bioaccumulation of valuable bioactive ingredients. The aim of this study is to incorporate rapid, high-accuracy, reliable, low-cost, simple, and state-of-the-art identification methods. Thus, increasing the possibility for the development of potential recognition applications, that could identify toxic-producing and valuable microalgae strains. Recently, deep learning (DL) has brought the study of microalgae species identification to a much higher depth of efficiency and accuracy. In doing so, this review paper emphasizes the significance of microalgae identification, and various forms of machine learning algorithms for image classification, followed by image pre-processing techniques, feature extraction, and selection for further classification accuracy. Future prospects over the challenges and improvements of potential DL classification model development, application in microalgae recognition, and image capturing technologies are discussed accordingly.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  11. Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL
    Biotechnol Adv, 2023;63:108095.
    PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095
    Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  12. Mustafa WA, Yazid H, Alquran H, Al-Issa Y, Junaini S
    PLoS One, 2024;19(6):e0306010.
    PMID: 38941319 DOI: 10.1371/journal.pone.0306010
    Weld defect inspection is an essential aspect of testing in industries field. From a human viewpoint, a manual inspection can make appropriate justification more difficult and lead to incorrect identification during weld defect detection. Weld defect inspection uses X-radiography testing, which is now mostly outdated. Recently, numerous researchers have utilized X-radiography digital images to inspect the defect. As a result, for error-free inspection, an autonomous weld detection and classification system are required. One of the most difficult issues in the field of image processing, particularly for enhancing image quality, is the issue of contrast variation and luminosity. Enhancement is carried out by adjusting the brightness of the dark or bright intensity to boost segmentation performance and image quality. To equalize contrast variation and luminosity, many different approaches have recently been put forth. In this research, a novel approach called Hybrid Statistical Enhancement (HSE), which is based on a direct strategy using statistical data, is proposed. The HSE method divided each pixel into three groups, the foreground, border, and problematic region, using the mean and standard deviation of a global and local neighborhood (luminosity and contrast). To illustrate the impact of the HSE method on the segmentation or detection stage, the datasets, specifically the weld defect image, were used. Bernsen and Otsu's methods are the two segmentation techniques utilized. The findings from the objective and visual elements demonstrated that the HSE approach might automatically improve segmentation output while effectively enhancing contrast variation and normalizing luminosity. In comparison to the Homomorphic Filter (HF) and Difference of Gaussian (DoG) approaches, the segmentation results for HSE images had the lowest result according to Misclassification Error (ME). After being applied to the HSE images during the segmentation stage, every quantitative result showed an increase. For example, accuracy increased from 64.171 to 84.964. In summary, the application of the HSE method has resulted in an effective and efficient outcome for background correction as well as improving the quality of images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  13. Sharma N, Gupta S, Gupta D, Gupta P, Juneja S, Shah A, et al.
    PLoS One, 2024;19(5):e0302880.
    PMID: 38718092 DOI: 10.1371/journal.pone.0302880
    Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is fourth significant reason of tumour death in men and women. The common cure for GI cancer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accurately segmenting the GI tract organs. The study presents a UMobileNetV2 model for semantic segmentation of small and large intestine and stomach in MRI images of the GI tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers as a decoder in the expansion path. The UW-Madison database, which contains MRI scans from 85 patients and 38,496 images, is used for evaluation. This automated technology has the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e., Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach and intestines in MRI images of gastrointestinal cancer patients.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  14. Abisha S, Mutawa AM, Murugappan M, Krishnan S
    PLoS One, 2023;18(4):e0284021.
    PMID: 37018344 DOI: 10.1371/journal.pone.0284021
    Different diseases are observed in vegetables, fruits, cereals, and commercial crops by farmers and agricultural experts. Nonetheless, this evaluation process is time-consuming, and initial symptoms are primarily visible at microscopic levels, limiting the possibility of an accurate diagnosis. This paper proposes an innovative method for identifying and classifying infected brinjal leaves using Deep Convolutional Neural Networks (DCNN) and Radial Basis Feed Forward Neural Networks (RBFNN). We collected 1100 images of brinjal leaf disease that were caused by five different species (Pseudomonas solanacearum, Cercospora solani, Alternaria melongenea, Pythium aphanidermatum, and Tobacco Mosaic Virus) and 400 images of healthy leaves from India's agricultural form. First, the original plant leaf is preprocessed by a Gaussian filter to reduce the noise and improve the quality of the image through image enhancement. A segmentation method based on expectation and maximization (EM) is then utilized to segment the leaf's-diseased regions. Next, the discrete Shearlet transform is used to extract the main features of the images such as texture, color, and structure, which are then merged to produce vectors. Lastly, DCNN and RBFNN are used to classify brinjal leaves based on their disease types. The DCNN achieved a mean accuracy of 93.30% (with fusion) and 76.70% (without fusion) compared to the RBFNN (82%-without fusion, 87%-with fusion) in classifying leaf diseases.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  15. Al-Masni MA, Lee S, Al-Shamiri AK, Gho SM, Choi YH, Kim DH
    Comput Biol Med, 2023 Feb;153:106553.
    PMID: 36641933 DOI: 10.1016/j.compbiomed.2023.106553
    Patient movement during Magnetic Resonance Imaging (MRI) scan can cause severe degradation of image quality. In Susceptibility Weighted Imaging (SWI), several echoes are typically measured during a single repetition period, where the earliest echoes show less contrast between various tissues, while the later echoes are more susceptible to artifacts and signal dropout. In this paper, we propose a knowledge interaction paradigm that jointly learns feature details from multiple distorted echoes by sharing their knowledge with unified training parameters, thereby simultaneously reducing motion artifacts of all echoes. This is accomplished by developing a new scheme that boosts a Single Encoder with Multiple Decoders (SEMD), which assures that the generated features not only get fused but also learned together. We called the proposed method Knowledge Interaction Learning between Multi-Echo data (KIL-ME-based SEMD). The proposed KIL-ME-based SEMD allows to share information and gain an understanding of the correlations between the multiple echoes. The main purpose of this work is to correct the motion artifacts and maintain image quality and structure details of all motion-corrupted echoes towards generating high-resolution susceptibility enhanced contrast images, i.e., SWI, using a weighted average of multi-echo motion-corrected acquisitions. We also compare various potential strategies that might be used to address the problem of reducing artifacts in multi-echoes data. The experimental results demonstrate the feasibility and effectiveness of the proposed method, reducing the severity of motion artifacts and improving the overall clinical image quality of all echoes with their associated SWI maps. Significant improvement of image quality is observed using both motion-simulated test data and actual volunteer data with various motion severity strengths. Eventually, by enhancing the overall image quality, the proposed network can increase the effectiveness of the physicians' capability to evaluate and correctly diagnose brain MR images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  16. Liu H, Huang J, Li Q, Guan X, Tseng M
    Artif Intell Med, 2024 Feb;148:102776.
    PMID: 38325925 DOI: 10.1016/j.artmed.2024.102776
    This study proposes a deep convolutional neural network for the automatic segmentation of glioblastoma brain tumors, aiming sat replacing the manual segmentation method that is both time-consuming and labor-intensive. There are many challenges for automatic segmentation to finely segment sub-regions from multi-sequence magnetic resonance images because of the complexity and variability of glioblastomas, such as the loss of boundary information, misclassified regions, and subregion size. To overcome these challenges, this study introduces a spatial pyramid module and attention mechanism to the automatic segmentation algorithm, which focuses on multi-scale spatial details and context information. The proposed method has been tested in the public benchmarks BraTS 2018, BraTS 2019, BraTS 2020 and BraTS 2021 datasets. The Dice score on the enhanced tumor, whole tumor, and tumor core were respectively 79.90 %, 89.63 %, and 85.89 % on the BraTS 2018 dataset, respectively 77.14 %, 89.58 %, and 83.33 % on the BraTS 2019 dataset, and respectively 77.80 %, 90.04 %, and 83.18 % on the BraTS 2020 dataset, and respectively 83.48 %, 90.70 %, and 88.94 % on the BraTS 2021 dataset offering performance on par with that of state-of-the-art methods with only 1.90 M parameters. In addition, our approach significantly reduced the requirements for experimental equipment, and the average time taken to segment one case was only 1.48 s; these two benefits rendered the proposed network intensely competitive for clinical practice.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  17. Dai L, Md Johar MG, Alkawaz MH
    Sci Rep, 2024 Nov 21;14(1):28885.
    PMID: 39572780 DOI: 10.1038/s41598-024-80441-y
    This work is to investigate the diagnostic value of a deep learning-based magnetic resonance imaging (MRI) image segmentation (IS) technique for shoulder joint injuries (SJIs) in swimmers. A novel multi-scale feature fusion network (MSFFN) is developed by optimizing and integrating the AlexNet and U-Net algorithms for the segmentation of MRI images of the shoulder joint. The model is evaluated using metrics such as the Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity (SE). A cohort of 52 swimmers with SJIs from Guangzhou Hospital serve as the subjects for this study, wherein the accuracy of the developed shoulder joint MRI IS model in diagnosing swimmers' SJIs is analyzed. The results reveal that the DSC for segmenting joint bones in MRI images based on the MSFFN algorithm is 92.65%, with PPV of 95.83% and SE of 96.30%. Similarly, the DSC for segmenting humerus bones in MRI images is 92.93%, with PPV of 95.56% and SE of 92.78%. The MRI IS algorithm exhibits an accuracy of 86.54% in diagnosing types of SJIs in swimmers, surpassing the conventional diagnostic accuracy of 71.15%. The consistency between the diagnostic results of complete tear, superior surface tear, inferior surface tear, and intratendinous tear of SJIs in swimmers and arthroscopic diagnostic results yield a Kappa value of 0.785 and an accuracy of 87.89%. These findings underscore the significant diagnostic value and potential of the MRI IS technique based on the MSFFN algorithm in diagnosing SJIs in swimmers.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  18. Ametefe DS, Sarnin SS, Ali DM, Ametefe GD, John D, Aliu AA, et al.
    Int J Lab Hematol, 2024 Oct;46(5):837-849.
    PMID: 38726705 DOI: 10.1111/ijlh.14305
    INTRODUCTION: Acute lymphoblastic leukemia (ALL) presents a formidable challenge in hematological malignancies, necessitating swift and precise diagnostic techniques for effective intervention. The conventional manual microscopy of blood smears, although widely practiced, suffers from significant limitations including labor-intensity and susceptibility to human error, particularly in distinguishing the subtle differences between normal and leukemic cells.

    METHODS: To overcome these limitations, our research introduces the ALLDet classifier, an innovative tool employing deep transfer learning for the automated analysis and categorization of ALL from White Blood Cell (WBC) nuclei images. Our investigation encompassed the evaluation of nine state-of-the-art pre-trained convolutional neural network (CNN) models, namely VGG16, VGG19, ResNet50, ResNet101, DenseNet121, DenseNet201, Xception, MobileNet, and EfficientNetB3. We augmented this approach by incorporating a sophisticated contour-based segmentation technique, derived from the Chan-Vese model, aimed at the meticulous segmentation of blast cell nuclei in blood smear images, thereby enhancing the accuracy of our analysis.

    RESULTS: The empirical assessment of these methodologies underscored the superior performance of the EfficientNetB3 model, which demonstrated exceptional metrics: a recall specificity of 98.5%, precision of 95.86%, F1-score of 97.16%, and an overall accuracy rate of 97.13%. The Chan-Vese model's adaptability to the irregular shapes of blast cells and its noise-resistant segmentation capability were key to capturing the complex morphological changes essential for accurate segmentation.

    CONCLUSION: The combined application of the ALLDet classifier, powered by EfficientNetB3, with our advanced segmentation approach, emerges as a formidable advancement in the early detection and accurate diagnosis of ALL. This breakthrough not only signifies a pivotal leap in leukemia diagnostic methodologies but also holds the promise of significantly elevating the standards of patient care through the provision of timely and precise diagnoses. The implications of this study extend beyond immediate clinical utility, paving the way for future research to further refine and enhance the capabilities of artificial intelligence in medical diagnostics.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  19. Sirimewan D, Kunananthaseelan N, Raman S, Garcia R, Arashpour M
    Waste Manag, 2024 Dec 15;190:149-160.
    PMID: 39321600 DOI: 10.1016/j.wasman.2024.09.018
    Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human-machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  20. Aly CA, Abas FS, Ann GH
    Sci Prog, 2021;104(2):368504211005480.
    PMID: 33913378 DOI: 10.1177/00368504211005480
    INTRODUCTION: Action recognition is a challenging time series classification task that has received much attention in the recent past due to its importance in critical applications, such as surveillance, visual behavior study, topic discovery, security, and content retrieval.

    OBJECTIVES: The main objective of the research is to develop a robust and high-performance human action recognition techniques. A combination of local and holistic feature extraction methods used through analyzing the most effective features to extract to reach the objective, followed by using simple and high-performance machine learning algorithms.

    METHODS: This paper presents three robust action recognition techniques based on a series of image analysis methods to detect activities in different scenes. The general scheme architecture consists of shot boundary detection, shot frame rate re-sampling, and compact feature vector extraction. This process is achieved by emphasizing variations and extracting strong patterns in feature vectors before classification.

    RESULTS: The proposed schemes are tested on datasets with cluttered backgrounds, low- or high-resolution videos, different viewpoints, and different camera motion conditions, namely, the Hollywood-2, KTH, UCF11 (YouTube actions), and Weizmann datasets. The proposed schemes resulted in highly accurate video analysis results compared to those of other works based on four widely used datasets. The First, Second, and Third Schemes provides recognition accuracies of 57.8%, 73.6%, and 52.0% on Hollywood2, 94.5%, 97.0%, and 59.3% on KTH, 94.5%, 95.6%, and 94.2% on UCF11, and 98.9%, 97.8% and 100% on Weizmann.

    CONCLUSION: Each of the proposed schemes provides high recognition accuracy compared to other state-of-art methods. Especially, the Second Scheme as it gives excellent comparable results to other benchmarked approaches.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links