Displaying publications 1 - 20 of 7801 in total

  1. Arebey M, Hannan MA, Begum RA, Basri H
    J. Environ. Manage., 2012 Aug 15;104:9-18.
    PMID: 22484654 DOI: 10.1016/j.jenvman.2012.03.035
    This paper presents solid waste bin level detection and classification using gray level co-occurrence matrix (GLCM) feature extraction methods. GLCM parameters, such as displacement, d, quantization, G, and the number of textural features, are investigated to determine the best parameter values of the bin images. The parameter values and number of texture features are used to form the GLCM database. The most appropriate features collected from the GLCM are then used as inputs to the multi-layer perceptron (MLP) and the K-nearest neighbor (KNN) classifiers for bin image classification and grading. The classification and grading performance for DB1, DB2 and DB3 features were selected with both MLP and KNN classifiers. The results demonstrated that the KNN classifier, at KNN = 3, d = 1 and maximum G values, performs better than using the MLP classifier with the same database. Based on the results, this method has the potential to be used in solid waste bin level classification and grading to provide a robust solution for solid waste bin level detection, monitoring and management.
    Matched MeSH terms: Refuse Disposal/methods*
  2. Sim JH
    Med Teach, 2015 Apr;37(4):405-6.
    PMID: 25655656 DOI: 10.3109/0142159X.2014.1001345
    Matched MeSH terms: Education, Medical/methods*
  3. Khan TF
    Med. J. Malaysia, 1992 Mar;47(1):65-8.
    PMID: 1387453
    Modified subtotal cholecystectomy involves removal of the gall bladder after circumferential division of the neck. Either the impacted stone or the surgeons finger was used as a guide to identify the neck. The stump cavity in the neck is obliterated with interrupted sutures to prevent recurrent stone formation. Indications for this procedure are obscure anatomy, due either to the severe inflammation in acute cholecystitis or dense adhesions in the small fibrosed gall bladder. The decision to perform modified subtotal cholecystectomy is taken during the operation. Forty three patients (14%) underwent this procedure during the period between August 85 and April 90. Out of 289 cholecystectomies performed seven were emergency and thirty-six were early cholecystectomies. With the increasing trend towards urgent and early cholecystectomy in acute cholecystitis the author has found this to be a safe and definitive procedure.
    Matched MeSH terms: Cholecystectomy/methods*
  4. Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S, Borboni A
    Sensors (Basel), 2018 Oct 07;18(10).
    PMID: 30301238 DOI: 10.3390/s18103342
    Electroencephalography (EEG) signals have great impact on the development of assistive rehabilitation devices. These signals are used as a popular tool to investigate the functions and the behavior of the human motion in recent research. The study of EEG-based control of assistive devices is still in early stages. Although the EEG-based control of assistive devices has attracted a considerable level of attention over the last few years, few studies have been carried out to systematically review these studies, as a means of offering researchers and experts a comprehensive summary of the present, state-of-the-art EEG-based control techniques used for assistive technology. Therefore, this research has three main goals. The first aim is to systematically gather, summarize, evaluate and synthesize information regarding the accuracy and the value of previous research published in the literature between 2011 and 2018. The second goal is to extensively report on the holistic, experimental outcomes of this domain in relation to current research. It is systematically performed to provide a wealthy image and grounded evidence of the current state of research covering EEG-based control for assistive rehabilitation devices to all the experts and scientists. The third goal is to recognize the gap of knowledge that demands further investigation and to recommend directions for future research in this area.
    Matched MeSH terms: Electroencephalography/methods*
  5. Varghese E, Samson RS, Kumbargere SN, Pothen M
    BMJ Case Rep, 2017 May 22;2017.
    PMID: 28536237 DOI: 10.1136/bcr-2017-220506
    Matched MeSH terms: Cephalometry/methods*; Radiography, Dental/methods*
  6. Adam M, Ng EYK, Tan JH, Heng ML, Tong JWK, Acharya UR
    Comput. Biol. Med., 2017 12 01;91:326-336.
    PMID: 29121540 DOI: 10.1016/j.compbiomed.2017.10.030
    Diabetes mellitus (DM) is a chronic metabolic disorder that requires regular medical care to prevent severe complications. The elevated blood glucose level affects the eyes, blood vessels, nerves, heart, and kidneys after the onset. The affected blood vessels (usually due to atherosclerosis) may lead to insufficient blood circulation particularly in the lower extremities and nerve damage (neuropathy), which can result in serious foot complications. Hence, an early detection and treatment can prevent foot complications such as ulcerations and amputations. Clinicians often assess the diabetic foot for sensory deficits with clinical tools, and the resulting foot severity is often manually evaluated. The infrared thermography is a fast, nonintrusive and non-contact method which allows the visualization of foot plantar temperature distribution. Several studies have proposed infrared thermography-based computer aided diagnosis (CAD) methods for diabetic foot. Among them, the asymmetric temperature analysis method is more superior, as it is easy to implement, and yielded satisfactory results in most of the studies. In this paper, the diabetic foot, its pathophysiology, conventional assessments methods, infrared thermography and the different infrared thermography-based CAD analysis methods are reviewed.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*; Thermography/methods*
  7. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*; Ultrasonics/methods*; Drug Delivery Systems/methods*; Nanotechnology/methods*; Green Chemistry Technology/methods*
  8. Kazemzadeh A, Ganesan P, Ibrahim F, He S, Madou MJ
    PLoS ONE, 2013;8(9):e73002.
    PMID: 24069169 DOI: 10.1371/journal.pone.0073002
    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
    Matched MeSH terms: Microfluidics/methods*; Microfluidic Analytical Techniques/methods
  9. Idbeaa T, Abdul Samad S, Husain H
    PLoS ONE, 2016;11(3):e0150732.
    PMID: 26963093 DOI: 10.1371/journal.pone.0150732
    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values.
    Matched MeSH terms: Video Recording/methods*; Data Compression/methods*
  10. Schilthuizen M, Vairappan CS, Slade EM, Mann DJ, Miller JA
    Trends Ecol. Evol. (Amst.), 2015 May;30(5):237-8.
    PMID: 25813120 DOI: 10.1016/j.tree.2015.03.002
    Matched MeSH terms: Ecology/methods*; Natural History/methods*
  11. Loh LC, Lai NM, Nalliah S, Jutti RC
    Ann. Acad. Med. Singap., 2007 Oct;36(10):867-70.
    PMID: 17987241
    Matched MeSH terms: Education, Medical/methods*; Teaching/methods*
  12. Havránek F
    Cesk Gynekol, 1977 Aug;42(7):532.
    PMID: 890794
    Matched MeSH terms: Abortion, Induced/methods*; Massage/methods*
  13. Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, et al.
    Planta, 2019 Sep;250(3):803-820.
    PMID: 31267230 DOI: 10.1007/s00425-019-03191-6
    MAIN CONCLUSION: Bambara groundnut has the potential to be used to contribute more the climate change ready agriculture. The requirement for nitrogen fixing, stress tolerant legumes is clear, particularly in low input agriculture. However, ensuring that existing negative traits are tackled and demand is stimulated through the development of markets and products still represents a challenge to making greater use of this legume. World agriculture is currently based on very limited numbers of crops, representing a significant risk to food supplies, particularly in the face of climate change which is expected to increase the frequency of extreme events. Minor and underutilised crops can help to develop a more resilient and nutritionally dense future agriculture. Bambara groundnut [Vigna subterranea (L.) Verdc.[, as a drought resistant, nitrogen-fixing, legume has a role to play. However, as with most underutilised crops, there are significant gaps in knowledge and also negative traits such as 'hard-to-cook' and 'photoperiod sensitivity to pod filling' associated with the crop which future breeding programmes and processing methods need to tackle, to allow it to make a significant contribution to the well-being of future generations. The current review assesses these factors and also considers what are the next steps towards realising the potential of this crop.
    Matched MeSH terms: Crop Production/methods; Cooking/methods
  14. Mansor MA, Ahmad MR
    Int J Mol Sci, 2015;16(6):12686-712.
    PMID: 26053399 DOI: 10.3390/ijms160612686
    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell's electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell's electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.
    Matched MeSH terms: Flow Cytometry/methods*; Microfluidics/methods*; Single-Cell Analysis/methods*
  15. Siddiqui MF, Reza AW, Kanesan J, Ramiah H
    ScientificWorldJournal, 2014;2014:620868.
    PMID: 25133249 DOI: 10.1155/2014/620868
    A wide interest has been observed to find a low power and area efficient hardware design of discrete cosine transform (DCT) algorithm. This research work proposed a novel Common Subexpression Elimination (CSE) based pipelined architecture for DCT, aimed at reproducing the cost metrics of power and area while maintaining high speed and accuracy in DCT applications. The proposed design combines the techniques of Canonical Signed Digit (CSD) representation and CSE to implement the multiplier-less method for fixed constant multiplication of DCT coefficients. Furthermore, symmetry in the DCT coefficient matrix is used with CSE to further decrease the number of arithmetic operations. This architecture needs a single-port memory to feed the inputs instead of multiport memory, which leads to reduction of the hardware cost and area. From the analysis of experimental results and performance comparisons, it is observed that the proposed scheme uses minimum logic utilizing mere 340 slices and 22 adders. Moreover, this design meets the real time constraints of different video/image coders and peak-signal-to-noise-ratio (PSNR) requirements. Furthermore, the proposed technique has significant advantages over recent well-known methods along with accuracy in terms of power reduction, silicon area usage, and maximum operating frequency by 41%, 15%, and 15%, respectively.
    Matched MeSH terms: Photography/methods; Video Recording/methods; Data Compression/methods*
  16. Choong MK, Logeswaran R, Bister M
    J Med Syst, 2006 Jun;30(3):139-43.
    PMID: 16848126
    This paper attempts to improve the diagnostic quality of magnetic resonance (MR) images through application of lossy compression as a noise-reducing filter. The amount of imaging noise present in MR images is compared with the amount of noise introduced by the compression, with particular attention given to the situation where the compression noise is a fraction of the imaging noise. A popular wavelet-based algorithm with good performance, Set Partitioning in Hierarchical Trees (SPIHT), was employed for the lossy compression. Tests were conducted with a number of MR patient images and corresponding phantom images. Different plausible ratios between imaging noise and compression noise (ICR) were considered, and the achievable compression gain through the controlled lossy compression was evaluated. Preliminary results show that at certain ICR's, it becomes virtually impossible to distinguish between the original and compressed-decompressed image. Radiologists presented with a blind test, in certain cases, showed preference to the compressed image rather than the original uncompressed ones, indicating that under controlled circumstances, lossy image compression can be used to improve the diagnostic quality of the MR images.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*; Radiology/methods*; Data Compression/methods*
  17. Shyamsunder R, Eswaran C, Sriraam N
    J Med Syst, 2007 Apr;31(2):109-16.
    PMID: 17489503
    The volume of patient monitoring video acquired in hospitals is very huge and hence there is a need for better compression of the same for effective storage and transmission. This paper presents a new motion segmentation technique, which improves the compression of patient monitoring video. The proposed motion segmentation technique makes use of a binary mask, which is obtained by thresholding the standard deviation values of the pixels along the temporal axis. Two compression methods, which make use of the proposed motion segmentation technique, are presented. The first method uses MPEG-4 coder and 9/7-biorthogonal wavelet for compressing the moving and stationary portions of the video respectively. The second method uses 5/3-biorthogonal wavelet for compressing both the moving and the stationary portions of the video. The performances of these compression algorithms are evaluated in terms of PSNR and bitrate. From the experimental results, it is found that the proposed motion technique improves the performance of the MPEG-4 coder. Among the two compression methods presented, the MPEG-4 based method performs better for bitrates less than 767 Kbps whereas for bitrates above 767 Kbps the performance of the wavelet based method is found superior.
    Matched MeSH terms: Monitoring, Physiologic/methods*; Videotape Recording/methods*; Data Compression/methods*
  18. Rao M
    Adv Physiol Educ, 2006 Jun;30(2):95.
    PMID: 16709743
    Matched MeSH terms: Education, Medical/methods*; Educational Measurement/methods*; Teaching/methods*
  19. Abidi SS
    J Med Syst, 2001 Jun;25(3):147-65.
    PMID: 11433545
    Worldwide healthcare delivery trends are undergoing a subtle paradigm shift--patient centered services as opposed to provider centered services and wellness maintenance as opposed to illness management. In this paper we present a Tele-Healthcare project TIDE--Tele-Healthcare Information and Diagnostic Environment. TIDE manifests an 'intelligent' healthcare environment that aims to ensure lifelong coverage of person-specific health maintenance decision-support services--i.e., both wellness maintenance and illness management services--ubiquitously available via the Internet/WWW. Taking on an all-encompassing health maintenance role--spanning from wellness to illness issues--the functionality of TIDE involves the generation and delivery of (a) Personalized, Pro-active, Persistent, Perpetual, and Present wellness maintenance services, and (b) remote diagnostic services for managing noncritical illnesses. Technically, TIDE is an amalgamation of diverse computer technologies--Artificial Intelligence, Internet, Multimedia, Databases, and Medical Informatics--to implement a sophisticated healthcare delivery infostructure.
    Matched MeSH terms: Health Promotion/methods*; Telemedicine/methods*; Patient-Centered Care/methods*
  20. Zulkepli SNIS, Hamid NH, Shukla V
    Biosensors (Basel), 2018 May 08;8(2).
    PMID: 29738428 DOI: 10.3390/bios8020045
    In recent years, the number of interdisciplinary research works related to the development of miniaturized systems with integrated chemical and biological analyses is increasing. Digital microfluidic biochips (DMFBs) are one kind of miniaturized systems designed for conducting inexpensive, fast, convenient and reliable biochemical assay procedures focusing on basic scientific research and medical diagnostics. The role of a dielectric layer in the digital microfluidic biochips is prominent as it helps in actuating microliter droplets based on the electrowetting-on-dielectric (EWOD) technique. The advantages of using three different material layers of dielectric such as parafilm, polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE) were reported in the current work. A simple fabrication process of a digital microfluidic device was performed and good results were obtained. The threshold of the actuation voltage was determined for all dielectric materials of varying thicknesses. Additionally, the OpenDrop device was tested by utilizing a single-plate system to transport microliter droplets for a bioassay operation. With the newly proposed fabrication methods, these dielectric materials showed changes in contact angle and droplet velocity when the actuation voltage was applied. The threshold actuation voltage for the dielectric layers of 10⁻13 μm was 190 V for the open plate DMFBs.
    Matched MeSH terms: Microfluidics/methods*; Microfluidic Analytical Techniques/methods*; Electrowetting/methods*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links