Displaying publications 61 - 80 of 210 in total

Abstract:
Sort:
  1. Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K
    Int J Mol Sci, 2021 Aug 21;22(16).
    PMID: 34445742 DOI: 10.3390/ijms22169036
    Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
    Matched MeSH terms: Soil Microbiology*
  2. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
    Matched MeSH terms: Soil Microbiology
  3. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al.
    Int J Mol Sci, 2022 Jan 10;23(2).
    PMID: 35054923 DOI: 10.3390/ijms23020737
    Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
    Matched MeSH terms: Soil Microbiology
  4. Naher UA, Othman R, Latif MA, Panhwar QA, Amaddin PA, Shamsuddin ZH
    Int J Mol Sci, 2013 Aug 30;14(9):17812-29.
    PMID: 23999588 DOI: 10.3390/ijms140917812
    This study was conducted to evaluate selected biomolecular characteristics of rice root-associated diazotrophs isolated from the Tanjong Karang rice irrigation project area of Malaysia. Soil and rice plant samples were collected from seven soil series belonging to order Inceptisol (USDA soil taxonomy). A total of 38 diazotrophs were isolated using a nitrogen-free medium. The biochemical properties of the isolated bacteria, such as nitrogenase activity, indoleacetic acid (IAA) production and sugar utilization, were measured. According to a cluster analysis of Jaccard's similarity coefficients, the genetic similarities among the isolated diazotrophs ranged from 10% to 100%. A dendogram constructed using the unweighted pair-group method with arithmetic mean (UPGMA) showed that the isolated diazotrophs clustered into 12 groups. The genomic DNA rep-PCR data were subjected to a principal component analysis, and the first four principal components (PC) accounted for 52.46% of the total variation among the 38 diazotrophs. The 10 diazotrophs that tested highly positive in the acetylene reduction assay (ARA) were identified as Bacillus spp. (9 diazotrophs) and Burkholderia sp. (Sb16) using the partial 16S rRNA gene sequence analysis. In the analysis of the biochemical characteristics, three principal components were accounted for approximately 85% of the total variation among the identified diazotrophs. The examination of root colonization using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) proved that two of the isolated diazotrophs (Sb16 and Sb26) were able to colonize the surface and interior of rice roots and fixed 22%-24% of the total tissue nitrogen from the atmosphere. In general, the tropical soils (Inceptisols) of the Tanjong Karang rice irrigation project area in Malaysia harbor a diverse group of diazotrophs that exhibit a large variation of biomolecular characteristics.
    Matched MeSH terms: Soil Microbiology
  5. Lee LH, Azman AS, Zainal N, Yin WF, Mutalib NA, Chan KG
    Int J Syst Evol Microbiol, 2015 Mar;65(Pt 3):996-1002.
    PMID: 25563924 DOI: 10.1099/ijs.0.000053
    Strain MUSC 117(T) was isolated from mangrove soil of the Tanjung Lumpur forest in Pahang, Malaysia. This bacterium was yellowish-white pigmented, Gram-staining-positive, rod-coccus shaped and non-motile. On the basis of 16S rRNA gene sequence, strain MUSC 117(T) exhibited highest sequence similarity to Sinomonas atrocyanea DSM 20127(T) (98.0 %), Sinomonas albida LC13(T) (97.9 %) and Sinomonas soli CW 59(T) (97.8 %), and lower (<97.6 %) sequence similarity to other species of the genus Sinomonas. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 27 %) between strain MUSC 117(T) and closely related species. Chemotaxonomically, the peptidoglycan type was A3α, containing the amino acids lysine, serine, glycine, alanine, glutamic acid and muramic acid. The whole-cell sugars detected were rhamnose, ribose, glucose, galactose and a smaller amount of mannose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and five unidentified glycolipids. The major fatty acids (>10.0 %) of the cell membrane were anteiso-C15 : 0 (39.4 %), C18 : 1ω7c (17.7 %), anteiso-C17 : 0 (17.2 %) and iso-C16 : 0 (11.4 %). The predominant respiratory quinones detected were MK-9(H2) and MK-9. The DNA G+C content was 67.3 mol%. A comparison of BOX-PCR fingerprints indicated that strain MUSC 117(T) represented a unique DNA profile. Results based on a polyphasic approach showed that strain MUSC 117(T) represents a novel species of the genus Sinomonas, for which the name Sinomonas humi sp. nov. is proposed. The type strain of Sinomonas humi sp. nov. is MUSC 117(T) ( = DSM 29362(T) = MCCC 1K00410(T) = NBRC 110653(T)).
    Matched MeSH terms: Soil Microbiology*
  6. Venil CK, Nordin N, Zakaria ZA, Ahmad WA
    Int J Syst Evol Microbiol, 2014 Sep;64(Pt 9):3153-9.
    PMID: 24958763 DOI: 10.1099/ijs.0.063594-0
    A bacterial strain, designated UTM-3(T), isolated from the rhizosphere soil of Artocarpus integer (cempedak) in Malaysia was studied to determine its taxonomic position. Cells were Gram-stain-negative, non-spore-forming rods, devoid of flagella and gliding motility, that formed yellow-pigmented colonies on nutrient agar and contained MK-6 as the predominant menaquinone. Comparative analysis of the 16S rRNA gene sequence of strain UTM-3(T) with those of the most closely related species showed that the strain constituted a distinct phyletic line within the genus Chryseobacterium with the highest sequence similarities to Chryseobacterium lactis NCTC 11390(T), Chryseobacterium viscerum 687B-08(T), Chryseobacterium tructae 1084-08(T), Chryseobacterium arthrosphaerae CC-VM-7(T), Chryseobacterium oncorhynchi 701B-08(T), Chryseobacterium vietnamense GIMN1.005(T), Chryseobacterium bernardetii NCTC 13530(T), Chryseobacterium nakagawai NCTC 13529(T), Chryseobacterium gallinarum LMG 27808(T), Chryseobacterium culicis R4-1A(T), Chryseobacterium flavum CW-E2(T), Chryseobacterium aquifrigidense CW9(T), Chryseobacterium ureilyticum CCUG 52546(T), Chryseobacterium indologenes NBRC 14944(T), Chryseobacterium gleum CCUG 14555(T), Chryseobacterium jejuense JS17-8(T), Chryseobacterium oranimense H8(T) and Chryseobacterium joostei LMG 18212(T). The major whole-cell fatty acids were iso-C15 : 0 and iso-C17 : 1ω9c, followed by summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7t) and iso-C17 : 0 3-OH, and the polar lipid profile consisted of phosphatidylethanolamine and several unknown lipids. The DNA G+C content strain UTM-3(T) was 34.8 mol%. On the basis of the phenotypic and phylogenetic evidence, it is concluded that the isolate represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium artocarpi sp. nov. is proposed. The type strain is UTM-3(T) ( = CECT 8497(T) = KCTC 32509(T)).
    Matched MeSH terms: Soil Microbiology*
  7. Lee LH, Azman AS, Zainal N, Eng SK, Mutalib NA, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Oct;64(Pt 10):3513-3519.
    PMID: 25056298 DOI: 10.1099/ijs.0.062414-0
    Strain MUSC 115(T) was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115(T) was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium. The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15:0 and anteiso-C17:0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115(T) showed the highest sequence similarity to Microbacterium immunditiarum SK 18(T) (98.1%), M. ulmi XIL02(T) (97.8%) and M. arborescens DSM 20754(T) (97.5%) and lower sequence similarity to strains of other species of the genus Microbacterium. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 24%) between strain MUSC 115(T) and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115(T) represented a unique DNA profile. The DNA G+C content determined was 70.9 ± 0.7 mol%, which is lower than that of M. immunditiarum SK 18(T). Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115(T) ( = MCCC 1K00251(T) = DSM 28240(T) = NBRC 110089(T)).
    Matched MeSH terms: Soil Microbiology*
  8. Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Sep;64(Pt 9):3297-306.
    PMID: 24994773 DOI: 10.1099/ijs.0.065045-0
    Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).
    Matched MeSH terms: Soil Microbiology*
  9. Lee LH, Zainal N, Azman AS, Mutalib NA, Hong K, Chan KG
    Int J Syst Evol Microbiol, 2014 May;64(Pt 5):1461-1467.
    PMID: 24449791 DOI: 10.1099/ijs.0.058701-0
    A novel actinobacterial strain, designated MUSC 201T, was isolated from a mangrove soil collected from Kuantan, the capital city of Pahang State in Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 201T represented a novel lineage within the class Actinobacteria. Strain MUSC 201T formed a distinct clade in the family Nocardioidaceae and was most closely related to the members of the genera Nocardioides (16S rRNA gene sequence similarity, 91.9-95.1%), Aeromicrobium (92.7-94.6%), Marmoricola (92.5-93.1%) and Kribbella (91.5-92.4%). The cells of this strain were irregular coccoid to short rod shaped. The peptidoglycan contained ll-diaminopimelic acid as diagnostic diamino acid and the peptidoglycan type was A3γ. The peptidoglycan cell wall contained ll-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio of 1.5:0.9:1.0:1.5. The cell-wall sugars were galactose and rhamnose. The predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid and four unknown phospholipids. The major cellular fatty acids were C18:1ω9c (30.8%), C16:0 (24.1%), and 10-methyl C18:0 (13.9%). The DNA G+C content was 72.0±0.1 mol%. On the basis of phylogenetic and phenotypic differences from members of the genera of the family Nocardioidaceae, a novel genus and species, Mumia flava gen. nov., sp. nov. are proposed. The type strain of Mumia flava is MUSC 201T (=DSM 27763T=MCCC 1A00646T=NBRC 109973T).
    Matched MeSH terms: Soil Microbiology*
  10. Choi JY, Ko G, Jheong W, Huys G, Seifert H, Dijkshoorn L, et al.
    Int J Syst Evol Microbiol, 2013 Dec;63(Pt 12):4402-4406.
    PMID: 23950148 DOI: 10.1099/ijs.0.047969-0
    Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202(T) and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, rpoB and gyrB gene sequences, they are considered to represent a novel species of the genus Acinetobacter. Their 16S rRNA gene sequences showed greatest pairwise similarity to Acinetobacter beijerinckii NIPH 838(T) (97.9-98.4 %). They shared highest rpoB and gyrB gene sequence similarity with Acinetobacter johnsonii DSM 6963(T) and Acinetobacter bouvetii 4B02(T) (85.4-87.6 and 78.1-82.7 %, respectively). Strain 11-0202(T) displayed low DNA-DNA reassociation values (<40 %) with the most closely related species of the genus Acinetobacter. The six strains utilized azelate, 2,3-butanediol, ethanol and dl-lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus Acinetobacter: summed feature 3 (C16 : 1ω7c, C16 : 1ω6c; 24.3-27.2 %), C18 : 1ω9c (19.9-22.1 %), C16 : 0 (15.2-22.0 %) and C12 : 0 (9.2-14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name Acinetobacter kookii sp. nov. is proposed. The type strain is 11-0202(T) ( = KCTC 32033(T) = JCM 18512(T)).
    Matched MeSH terms: Soil Microbiology*
  11. Slack AT, Khairani-Bejo S, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, et al.
    Int J Syst Evol Microbiol, 2009 Apr;59(Pt 4):705-8.
    PMID: 19329592 DOI: 10.1099/ijs.0.002766-0
    A single Leptospira strain (designated Bejo-Iso9(T)) was isolated from a soil sample taken in Johor, Malaysia. The isolate showed motility and morphology typical of the genus Leptospira under dark-field microscopy. Cells were found to be 10-13 microm in length and 0.2 microm in diameter, with a wavelength of 0.5 microm and an amplitude of approximately 0.2 microm. Phenotypically, strain Bejo-Iso9(T) grew in Ellinghausen-McCullough-Johnson-Harris medium at 13, 30 and 37 degrees C, and also in the presence of 8-azaguanine. Serologically, strain Bejo-Iso9(T) produced titres towards several members of the Tarassovi serogroup, but was found to be serologically unique by cross-agglutinin absorption test and thus represented a novel serovar. The proposed name for this serovar is Malaysia. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the genus Leptospira, with sequence similarities within the range 90.4-99.5% with respect to recognized Leptospira species. DNA-DNA hybridization against the three most closely related Leptospira species was used to confirm the results of the 16S rRNA gene sequence analysis. The G+C content of the genome of strain Bejo-Iso9(T) was 36.2 mol%. On the basis of phenotypic, serological and phylogenetic data, strain Bejo-Iso9(T) represents a novel species of the genus Leptospira, for which the name Leptospira kmetyi sp. nov. is proposed. The type strain is Bejo-Iso9(T) (=WHO LT1101(T)=KIT Bejo-Iso9(T)).
    Matched MeSH terms: Soil Microbiology*
  12. Juboi H, Basik AA, Shamsul SSG, Arnold P, Schmitt EK, Sanglier JJ, et al.
    Int J Syst Evol Microbiol, 2015 Nov;65(11):4113-4120.
    PMID: 26303235 DOI: 10.1099/ijsem.0.000548
    The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T was closely associated with the genus Luteipulveratus and formed a distinct monophyletic clade with the only described species, Luteipulveratus mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis was 98.7 %. DNA-DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5 %. The DNA G+C content of strain C296001T was 71.7 mol%. Using a PacBio RS II system, whole genome sequences for strains C296001T and NBRC 105296T were obtained. The genome sizes of 4.5 Mbp and 5.4 Mbp determined were similar to those of other members of the family Dermacoccaceae. The cell-wall peptidoglycan contained lysine, alanine, aspartic acid, glutamic acid and serine, representing the peptidoglycan type A4α l-Lys-l-Ser-d-Asp. The major menaquinones were MK-8(H4), MK-8 and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid were the polar lipids, while the whole-cell sugars were glucose, fucose and lesser amounts of ribose and galactose. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, iso-C18 : 0 and 10-methyl C17 : 0. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. On the basis of the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a representative of a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T ( = ATCC TSD-4T = JCM 30660T).
    Matched MeSH terms: Soil Microbiology*
  13. Ee R, Madhaiyan M, Ji L, Lim YL, Nor NM, Tee KK, et al.
    Int J Syst Evol Microbiol, 2016 Jun;66(6):2297-2304.
    PMID: 26978486 DOI: 10.1099/ijsem.0.001025
    Phylogenetic and taxonomic characterization was performed for bacterium RB-25T, which was isolated from a soil sample collected in a former municipal landfill site in Puchong, Malaysia. Growth occurred at 20-37 °C at pH 5-8 but not in the presence of 9 % (w/v) NaCl or higher. The principal fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). Ubiquinone-8 was the only isoprenoid quinone detected. Polar lipid analysis revealed the presence of phospholipid, phosphoaminolipid, phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminolipid. DNA G+C content was 50.9 mol% phylogenetic analysis based on 16S rRNA gene sequence showed that strain RB-25T formed a distinct lineage within the family Enterobacteriaceae of the class Gammaproteobacteria. It exhibited a low level of 16S rRNA gene sequence similarity with its phylogenetic neighbours Pantoea rwandensis LMG 26275T (96.6 %), Rahnella aquatilis CIP 78.65T (96.5 %), Pectobacterium betavasculorum ATCC 43762T (96.4 %), Pantoea rodasii LMG 26273T (96.3 %), Gibbsiella dentisursi NUM 1720T (96.3 %) and Serratia glossinae C1T (96.2 %). Multilocus sequence analyses based on fusA, pyrG, rplB, rpoB and sucA sequences showed a clear distinction of strain RB-25T from the most closely related genera. Isolate RB-25T could also be distinguished from members of these genera by a combination of the DNA G+C content, respiratory quinone system, fatty acid profile, polar lipid composition and other phenotypic features. Strain RB-25T represents a novel species of a new genus, for which the name Chaniamultitudinisentens gen. nov., sp. nov. is proposed. The type strain is RB-25T (=DSM 28811T=LMG 28304T).
    Matched MeSH terms: Soil Microbiology*
  14. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
    Matched MeSH terms: Soil Microbiology*
  15. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, et al.
    Int J Syst Evol Microbiol, 2020 Mar;70(3):1769-1776.
    PMID: 31976852 DOI: 10.1099/ijsem.0.003970
    To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.
    Matched MeSH terms: Soil Microbiology*
  16. Asem MD, Salam N, Idris H, Zhang XT, Bull AT, Li WJ, et al.
    Int J Syst Evol Microbiol, 2020 May;70(5):3210-3218.
    PMID: 32320378 DOI: 10.1099/ijsem.0.004158
    The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2-94.9 %) and in silico DNA-DNA hybridization (52.5-62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.
    Matched MeSH terms: Soil Microbiology*
  17. Kämpfer P, Lai WA, Arun AB, Young CC, Rekha PD, Martin K, et al.
    Int J Syst Evol Microbiol, 2012 Nov;62(Pt 11):2750-2756.
    PMID: 22286908 DOI: 10.1099/ijs.0.039057-0
    A Gram-negative, coccoid-shaped bacterium, strain CC-CCM15-8(T), was isolated from a rhizosphere soil sample of the plant Crossostephium chinense (L.) Makino (Seremban) from Budai Township, Chiayi County, Taiwan. 16S rRNA gene sequence analysis clearly allocated strain CC-CCM15-8(T) to the Paracoccus cluster, showing highest similarities to the type strains of 'Paracoccus beibuensis' (98.8%), Paracoccus homiensis (97.6%), Paracoccus aestuarii (97.7%) and Paracoccus zeaxanthinifaciens (97.7%). The fatty acid profile, comprising C(18:1)ω7c as the major component and C(10:0) 3-OH as the characteristic hydroxylated fatty acid, supported the placement of strain CC-CCM15-8(T) within the genus Paracoccus. The polyamine pattern consisted of putrescine and spermidine as major components. Ubiqinone Q-10 was the major quinone type (95%); ubiquinone Q-9 was also detected (5%). The complex polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and unidentified phospholipids, lipids and glycolipids. Levels of DNA-DNA relatedness between strain CC-CCM15-8(T) and 'P. beibuensis' LMG 25871(T), P. aestuarii DSM 19484(T), P. zeaxanthinifaciens LMG 21993(T) and P. homiensis KACC 11518(T) were 24.9% (34.8%, reciprocal analysis), 15.7% (17.5%), 17.7% (23.4%) and 16.0% (25.4%), respectively. Physiological and biochemical test results allowed the phenotypic differentiation of strain CC-CCM15-8(T) from its closest relatives in the genus Paracoccus. Based on the data presented, it is concluded that strain CC-CCM15-8(T) represents a novel species of the genus Paracoccus, for which the name Paracoccus rhizosphaerae sp. nov. is proposed. The type strain is CC-CCM15-8(T) (=LMG 26205(T)=CCM 7904(T)).
    Matched MeSH terms: Soil Microbiology
  18. Zucchi TD, Tan GYA, Goodfellow M
    Int J Syst Evol Microbiol, 2012 Jan;62(Pt 1):168-172.
    PMID: 21378137 DOI: 10.1099/ijs.0.029256-0
    The taxonomic positions of two thermophilic actinomycetes isolated from an arid Australian soil sample were established based on an investigation using a polyphasic taxonomic approach. The organisms had chemical and morphological properties typical of members of the genus Amycolatopsis and formed distinct phyletic lines in the Amycolatopsis methanolica 16S rRNA subclade. The two organisms were distinguished from one another and from the type strains of related species of the genus Amycolatopsis using a range of phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the two isolates be classified in the genus Amycolatopsis as Amycolatopsis thermophila sp. nov. (type strain GY088(T)=NCIMB 14699(T)=NRRL B-24836(T)) and Amycolatopsis viridis sp. nov. (type strain GY115(T)=NCIMB 14700(T)=NRRL B-24837(T)).
    Matched MeSH terms: Soil Microbiology*
  19. Zucchi TD, Tan GYA, Bonda ANV, Frank S, Kshetrimayum JD, Goodfellow M
    Int J Syst Evol Microbiol, 2012 Jun;62(Pt 6):1245-1251.
    PMID: 21764982 DOI: 10.1099/ijs.0.031039-0
    The taxonomic positions of three thermophilic actinomycetes isolated from arid soil samples were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Amycolatopsis. 16S rRNA gene sequence data supported the classification of the isolates in the genus Amycolatopsis and showed that they formed distinct branches in the Amycolatopsis methanolica subclade. DNA-DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The three isolates were readily distinguished from one another and from the type strains of species classified in the A. methanolica subclade based on a combination of phenotypic properties and by genomic fingerprinting. Consequently, it is proposed that the three isolates be classified in the genus Amycolatopsis as representatives of Amycolatopsis granulosa sp. nov. (type strain GY307(T) = NCIMB 14709(T) = NRRL B-24844(T)), Amycolatopsis ruanii sp. nov. (type strain NMG112(T) = NCIMB 14711(T) = NRRL B-24848(T)) and Amycolatopsis thermalba sp. nov. (type strain SF45(T) = NCIMB 14705(T) = NRRL B-24845(T)).
    Matched MeSH terms: Soil Microbiology*
  20. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: Soil Microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links