Displaying publications 61 - 64 of 64 in total

Abstract:
Sort:
  1. Antonova SV, Haffke M, Corradini E, Mikuciunas M, Low TY, Signor L, et al.
    Nat Struct Mol Biol, 2018 12;25(12):1119-1127.
    PMID: 30510221 DOI: 10.1038/s41594-018-0156-z
    TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID complexes with unique subunit compositions exist and several TFIID subunits are shared with other complexes, thereby conveying precise cellular control of subunit allocation and functional assembly of this essential transcription factor. However, the molecular mechanisms that underlie the regulation of TFIID remain poorly understood. Here we use quantitative proteomics to examine TFIID submodules and assembly mechanisms in human cells. Structural and mutational analysis of the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions that are crucial for TFIID integrity and for allocation of TAF9 to TFIID or the Spt-Ada-Gcn5 acetyltransferase (SAGA) co-activator complex. We discover a key checkpoint function for the chaperonin CCT, which specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9 and ultimate holo-TFIID formation. Our findings illustrate at the molecular level how multisubunit complexes are generated within the cell via mechanisms that involve checkpoint decisions facilitated by a chaperone.
    Matched MeSH terms: Transcription, Genetic
  2. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: Transcription, Genetic
  3. Omidvar V, Abdullah SN, Ho CL, Mahmood M, Al-Shanfari AB
    Mol Biol Rep, 2012 Sep;39(9):8907-18.
    PMID: 22722992 DOI: 10.1007/s11033-012-1758-x
    Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
    Matched MeSH terms: Transcription, Genetic
  4. Wong PF, Abubakar S
    Oncol Rep, 2010 Jun;23(6):1501-16.
    PMID: 20428803
    The normally high concentration of zinc in normal prostate gland is significantly reduced in malignant prostate tissues, but its precise role in prostate tumorigenesis remains unclear. The present study investigates the growth and transcriptional responses of LNCaP prostate cancer cells to prolonged high Zn2+ treatment. Restoration of high intracellular Zn2+ to LNCaP cells significantly reduced the cell proliferation rate by 42.2+/-7.4% at the exponential growth phase and the efficiency of colony formation on soft agar by 87.2+/-2.5% at week 5 post-treatment. At least 161 LNCaP cell genes responded to the high intracellular Zn2+, including approximately 10.6% genes that negatively regulate cell growth and approximately 16.1% genes that promote cancer cell proliferation. Inhibition of cell growth was transient as normal proliferation rate and colony formation efficiency were restored later even in the continuous presence of high intracellular Zn2+. RT-qPCR showed constitutively higher expression levels of FBL, CD164 and STEAP1 in LNCaP cells. FBL and CD164 were responsive to the treatment with Zn2+ in PNT2 prostate normal cells and were further overexpressed in the prolonged Zn2+-treated LNCaP cells. These observations suggest that in general high Zn2+ has suppressive effects on prostate cancer cell growth but continuous exposure to an environment of high Zn2+ can lead to the overexpression of cancer promoting genes such as FBL and CD164. This could be the antagonistic mechanism used to overcome the initial cell growth inhibitory effects of high Zn2+. These findings support a potential detrimental role of Zn2+ in prostate cancer.
    Matched MeSH terms: Transcription, Genetic/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links