Displaying publications 61 - 80 of 445 in total

Abstract:
Sort:
  1. Afiq Ramlee MN, Hussin MF, Roslan A, Rosmidi FH, Pesiu E, Aisyah A Rahim N, et al.
    Data Brief, 2020 Apr;29:105328.
    PMID: 32181296 DOI: 10.1016/j.dib.2020.105328
    This data article presents the diversity of flora and selected fauna in Tasik Kenyir, Malaysia. This man-made lake once suffered huge loss of biodiversity for allowing an earth-dam construction during 1980s. Series of publications on different types of target taxa have been published separately after the post-dam construction. A biodiversity assessment was conducted in Tasik Kenyir from March 2015 until February 2016. The one year assessment were compiled with the previous published data to document and updated the biodiversity checklist in the lake. The data show that Tasik Kenyir is occupied by 113 tree species, 217 butterfly species, 35 bee species, 26 reptile species, 267 aves species and 153 mammal species. The micro-climate data was downloaded from the Malaysian Meteorological Department and analysed in R Studio to highlight the relationship between climate data and biodiversity data.
    Matched MeSH terms: Trees
  2. Zakaria N, Tarmizi AA, Zuki MAM, Ahmad AB, Mamat MA, Abdullah MT
    Data Brief, 2020 Jun;30:105567.
    PMID: 32382599 DOI: 10.1016/j.dib.2020.105567
    This data article is about bats observed from fragmented forest understories interspaced by agricultural plantations, utility corridors, and man-made structures within rural areas of Setiu (Bukit Kesing Forest Reserve and Ladang Tayor TDM) and Hulu Terengganu (Pengkalan Utama and Sungai Buweh, Kenyir) that are situated in Terengganu state, Peninsular Malaysia. Surveys were conducted from October 2018 until January 2019. These bats were captured using harp traps and mist nets that were set 30 m apart across flyways, streams, rivers and less cluttered trees in the 50 m transect zones (identified at each site). All animals captured were distinguished by morphology and released at the same location it was caught. The data comprise of 15 species of bats from four family groups, namely Hipposideridae, Pteropodidae, Rhinolophidae and Vespertilionidae. The data were interpreted into weight-forearm length (W-FA) to inform about bats Body Condition Index (-0.25 to 0.25).
    Matched MeSH terms: Trees
  3. Sastry N
    Demography, 2002 Feb;39(1):1-23.
    PMID: 11852832
    I assess the population health effects in Malaysia of air pollution from a widespread series of fires that occurred in Indonesia between April and November of 1997. I describe how the fires occurred and why the associated air pollution was so widespread and long lasting. The main objective is to uncover any mortality effects and to assess how large and important they were. I also investigate whether the mortality effects were persistent or whether they represented a short-term, mortality-harvesting effect. The results show that the smoke haze from the fires had a deleterious effect on the health of the population in Malaysia.
    Matched MeSH terms: Trees*
  4. Kaufmann E, Maschwitz U
    Naturwissenschaften, 2006 May;93(5):216-27.
    PMID: 16544124
    Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73-89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125-133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to "classical" AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.
    Matched MeSH terms: Trees*
  5. Feldhaar H, Fiala B, bin Hashim R, Maschwitz U
    Naturwissenschaften, 2000 Sep;87(9):408-11.
    PMID: 11091965
    Matched MeSH terms: Trees/microbiology*
  6. Ledo A, Cornulier T, Illian JB, Iida Y, Kassim AR, Burslem DF
    Ecol Appl, 2016 Dec;26(8):2374-2380.
    PMID: 27907254 DOI: 10.1002/eap.1450
    Accurate estimation of tree biomass is necessary to provide realistic values of the carbon stored in the terrestrial biosphere. A recognized source of errors in tree aboveground biomass (AGB) estimation is introduced when individual tree height values (H) are not directly measured but estimated from diameter at breast height (DBH) using allometric equations. In this paper, we evaluate the performance of 12 alternative DBH : H equations and compare their effects on AGB estimation for three tropical forests that occur in contrasting climatic and altitudinal zones. We found that fitting a three-parameter Weibull function using data collected locally generated the lowest errors and bias in H estimation, and that equations fitted to these data were more accurate than equations with parameters derived from the literature. For computing AGB, the introduced error values differed notably among DBH : H allometric equations, and in most cases showed a clear bias that resulted in either over- or under-estimation of AGB. Fitting the three-parameter Weibull function minimized errors in AGB estimates in our study and we recommend its widespread adoption for carbon stock estimation. We conclude that many previous studies are likely to present biased estimates of AGB due to the method of H estimation.
    Matched MeSH terms: Trees*
  7. Granados A, Brodie JF, Bernard H, O'Brien MJ
    Ecol Appl, 2017 10;27(7):2092-2101.
    PMID: 28660670 DOI: 10.1002/eap.1592
    Vertebrate granivores destroy plant seeds, but whether animal-induced seed mortality alters plant recruitment varies with habitat context, seed traits, and among granivore species. An incomplete understanding of seed predation makes it difficult to predict how widespread extirpations of vertebrate granivores in tropical forests might affect tree communities, especially in the face of habitat disturbance. Many tropical forests are simultaneously affected by animal loss as well as habitat disturbance, but the consequences of each for forest regeneration are often studied separately or additively, and usually on a single plant demographic stage. The combined impacts of these threats could affect plant recruitment in ways that are not apparent when studied in isolation. We used wire cages to exclude large (elephants), medium, (sambar deer, bearded pigs, muntjac deer), and small (porcupines, chevrotains) ground-dwelling mammalian granivores and herbivores in logged and unlogged forests in Malaysian Borneo. We assessed the interaction between habitat disturbance (selective logging) and experimental defaunation on seed survival, germination, and seedling establishment in five dominant dipterocarp tree species spanning a 21-fold gradient in seed size. Granivore-induced seed mortality was consistently higher in logged forest. Germination of unpredated seeds was reduced in logged forest and in the absence of small to large-bodied mammals. Experimental defaunation increased germination and reduced seed removal but had little effect on seed survival. Seedling recruitment however, was more likely where logging and animal loss occurred together. The interacting effects of logging and hunting could therefore, actually increase seedling establishment, suggesting that the loss of mammals in disturbed forest could have important consequences for forest regeneration and composition.
    Matched MeSH terms: Trees/growth & development; Trees/physiology*
  8. Eichhorn MP, Nilus R, Compton SG, Hartley SE, Burslem DF
    Ecology, 2010 Apr;91(4):1092-101.
    PMID: 20462123
    Tree seedlings in tropical rain forests are subject to both damage from natural enemies and intense interspecific competition. This leads to a trade-off in investment between defense and growth, and it is likely that tree species specialized to particular habitats tailor this balance to correspond with local resource availability. It has also been suggested that differential herbivore impacts among tree species may drive habitat segregation, favoring species adapted to particular resource conditions. In order to test these predictions, a reciprocal transplant experiment in Sabah, Malaysia, was established with seedlings of five species of Dipterocarpaceae. These were specialized to either alluvial (Hopea nervosa, Parashorea tomentella) or sandstone soils (Shorea multiflora, H. beccariana), or were locally absent (S. fallax). A total of 3000 seedlings were planted in paired gap and understory plots in five sites on alluvial and sandstone soils. Half of all seedlings were fertilized. Seedling growth and mortality were recorded in regular samples over 3.5 years, and rates of insect herbivore damage were estimated from censuses of foliar tissue loss on marked mature leaves and available young leaves. Greater herbivory rates on mature leaves had no measurable effects on seedling growth but were associated with a significantly increased likelihood of mortality during the following year. In contrast, new-leaf herbivory rates correlated with neither growth nor mortality. There were no indications of differential impacts of herbivory among the five species, nor between experimental treatments. Herbivory was not shown to influence segregation of species between soil types, although it may contribute toward differential survival among light habitats. Natural rates of damage were substantially lower than have been shown to influence tree seedling growth and mortality in previous manipulative studies.
    Matched MeSH terms: Trees*
  9. Kurokawa H, Nakashizuka T
    Ecology, 2008 Sep;89(9):2645-56.
    PMID: 18831185
    There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.
    Matched MeSH terms: Trees/physiology*
  10. Blonder B, Both S, Jodra M, Majalap N, Burslem D, Teh YA, et al.
    Ecology, 2019 Nov;100(11):e02844.
    PMID: 31336398 DOI: 10.1002/ecy.2844
    The data set contains images of leaf venation networks obtained from tree species in Malaysian Borneo. The data set contains 726 leaves from 295 species comprising 50 families, sampled from eight forest plots in Sabah. Image extents are approximately 1 × 1 cm, or 50 megapixels. All images contain a region of interest in which all veins have been hand traced. The complete data set includes over 30 billion pixels, of which more than 600 million have been validated by hand tracing. These images are suitable for morphological characterization of these species, as well as for training of machine-learning algorithms that segment biological networks from images. Data are made available under the Open Data Commons Attribution License. You are free to copy, distribute, and use the database; to produce works from the database; and to modify, transform, and build upon the database. You must attribute any public use of the database, or works produced from the database, in the manner specified in the license. For any use or redistribution of the database, or works produced from it, you must make clear to others the license of the database and keep intact any notices on the original database.
    Matched MeSH terms: Trees
  11. Iida Y, Poorter L, Sterck F, Kassim AR, Potts MD, Kubo T, et al.
    Ecology, 2014 Feb;95(2):353-63.
    PMID: 24669729
    Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature, wood density, and capacity for horizontal crown expansion. The enhancement of a demographic trade-off due to interspecific variation in functional traits in the understory helps to explain species coexistence in diverse rain forests.
    Matched MeSH terms: Trees/anatomy & histology*; Trees/growth & development*
  12. Iwanaga H, Teshima KM, Khatab IA, Inomata N, Finkeldey R, Siregar IZ, et al.
    Ecol Evol, 2012 Jul;2(7):1663-75.
    PMID: 22957170 DOI: 10.1002/ece3.284
    Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.
    Matched MeSH terms: Trees
  13. Baltzer JL, Davies SJ
    Ecol Evol, 2012 Nov;2(11):2682-94.
    PMID: 23170205 DOI: 10.1002/ece3.383
    Drought and pests are primary abiotic and biotic factors proposed as selective filters acting on species distributions along rainfall gradients in tropical forests and may contribute importantly to species distributional limits, performance, and diversity gradients. Recent research demonstrates linkages between species distributions along rainfall gradients and physiological drought tolerance; corresponding experimental examinations of the contribution of pest pressure to distributional limits and potential interactions between drought and herbivory are limited. This study aims to quantitate differential performance and herbivory as a function of species range limits across a climatic and floristic transition in Southeast Asia. Khao Chong Botanical Garden, Thailand and Pasoh Forest Reserve, Malaysia straddle the Kangar-Pattani Line. A reciprocal transplantation across a seasonality gradient was established using two groups of species ("widespread" taxa whose distributions include seasonally dry forests and "aseasonal" taxa whose distributions are limited to aseasonal forests). Growth, biomass allocation, survival, and herbivory were monitored for 19 months. Systematic differences in performance were a function of species distribution in relation to rainfall seasonality. In aseasonal Pasoh, aseasonal species had both greater growth and survivorship than widespread species. These differences were not a function of differential herbivory as widespread and aseasonal species experienced similar damage in the aseasonal forest. In seasonally dry Khao Chong, widespread species showed higher survivorship than aseasonal species, but these differences were only apparent during drought. We link this differential performance to physiological mechanisms as well as differential tolerance of biotic pressure during drought stress. Systematic decreases in seedling survival in aseasonal taxa during drought corresponded with previously documented physiological differences and may be exacerbated by herbivore damage. These results have important implications for tropical diversity and community composition in light of predicted increases in the frequency and severity of drought in hyperdiverse tropical forests.
    Matched MeSH terms: Trees
  14. Yahya MS, Syafiq M, Ashton-Butt A, Ghazali A, Asmah S, Azhar B
    Ecol Evol, 2017 08;7(16):6314-6325.
    PMID: 28861235 DOI: 10.1002/ece3.3205
    Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
    Matched MeSH terms: Trees
  15. Liu X, Burslem DFRP, Taylor JD, Taylor AFS, Khoo E, Majalap-Lee N, et al.
    Ecol Lett, 2018 05;21(5):713-723.
    PMID: 29536604 DOI: 10.1111/ele.12939
    Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.
    Matched MeSH terms: Trees*
  16. Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, et al.
    Ecol Lett, 2018 07;21(7):989-1000.
    PMID: 29659115 DOI: 10.1111/ele.12964
    Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.
    Matched MeSH terms: Trees
  17. Bagchi R, Press MC, Scholes JD
    Ecol Lett, 2010 Jan;13(1):51-9.
    PMID: 19849708 DOI: 10.1111/j.1461-0248.2009.01397.x
    One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.
    Matched MeSH terms: Trees/physiology*
  18. Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ
    Ecol Lett, 2007 Jun;10(6):461-9.
    PMID: 17498145
    The impacts of global change on tropical forests remain poorly understood. We examined changes in tree growth rates over the past two decades for all species occurring in large (50-ha) forest dynamics plots in Panama and Malaysia. Stem growth rates declined significantly at both forests regardless of initial size or organizational level (species, community or stand). Decreasing growth rates were widespread, occurring in 24-71% of species at Barro Colorado Island, Panama (BCI) and in 58-95% of species at Pasoh, Malaysia (depending on the sizes of stems included). Changes in growth were not consistently associated with initial growth rate, adult stature, or wood density. Changes in growth were significantly associated with regional climate changes: at both sites growth was negatively correlated with annual mean daily minimum temperatures, and at BCI growth was positively correlated with annual precipitation and number of rainfree days (a measure of relative insolation). While the underlying cause(s) of decelerating growth is still unresolved, these patterns strongly contradict the hypothesized pantropical increase in tree growth rates caused by carbon fertilization. Decelerating tree growth will have important economic and environmental implications.
    Matched MeSH terms: Trees/growth & development*
  19. Chu C, Lutz JA, Král K, Vrška T, Yin X, Myers JA, et al.
    Ecol Lett, 2019 Feb;22(2):245-255.
    PMID: 30548766 DOI: 10.1111/ele.13175
    Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
    Matched MeSH terms: Trees*
  20. Fung T, Chisholm RA, Anderson-Teixeira K, Bourg N, Brockelman WY, Bunyavejchewin S, et al.
    Ecol Lett, 2020 Jan;23(1):160-171.
    PMID: 31698546 DOI: 10.1111/ele.13412
    Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.
    Matched MeSH terms: Trees*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links