Displaying publications 61 - 69 of 69 in total

Abstract:
Sort:
  1. Mostafa AA, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A
    Bioprocess Biosyst Eng, 2019 Sep;42(9):1483-1494.
    PMID: 31076865 DOI: 10.1007/s00449-019-02144-3
    Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.
    Matched MeSH terms: Biotransformation
  2. Prakash I, Bunders C, Devkota KP, Charan RD, Ramirez C, Priedemann C, et al.
    Biomolecules, 2014;4(2):374-89.
    PMID: 24970220 DOI: 10.3390/biom4020374
    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides.
    Matched MeSH terms: Biotransformation
  3. Hadibarata T, Kristanti RA
    Biodegradation, 2014 Jun;25(3):373-82.
    PMID: 24114532 DOI: 10.1007/s10532-013-9666-x
    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.
    Matched MeSH terms: Biotransformation
  4. Kwan TK, Pertiwi AK, Taylor NF, Gower DB
    Biochim. Biophys. Acta, 1988 Sep 23;962(2):214-9.
    PMID: 3167079
    Twenty authentic steroids, derivatized as O-methyl oximes (MO), trimethylsilyl (TMS) ethers or as MO-TMS ethers have been subjected to capillary gas chromatography using two different columns. Virtually all of the steroid derivatives have been resolved, one difficult pair to separate being 5,16-androstadien-3 beta-ol and 5 alpha-androst-16-en-3 beta-ol on the non-selective phase OV-1. Where syn and anti forms of MO derivatives arose, these were also resolved under the conditions utilised. This technique of 'steroid profiling' has been applied to the separation and quantification of metabolites of pregnenolone which were formed during incubations of the microsomal and cytosolic fractions from rat testes. The majority of the metabolites were found in the microsomal incubation. These compounds included some odorous 16-androstenes as well as other C21 and C19 steroids, the formation of which was consistent with the 5-ene and 4-ene pathways of testosterone biosynthesis being operative. In addition, evidence was obtained for 16 alpha-hydroxylation of C21 steroids. Very much less metabolic activity was found in the cytosolic fraction of rat testes. Metabolic pathways have been proposed which both confirm and extend earlier work. We conclude that the rat testis can only form some of the odorous, possibly pheromonal, 16-androstenes and that these are quantitatively less important than in the porcine testis.
    Matched MeSH terms: Biotransformation
  5. Rashid S, Anjum S, Ahmad A, Nadeem R, Ahmed M, Shah SAA, et al.
    Biomed Res Int, 2022;2022:6865472.
    PMID: 35865666 DOI: 10.1155/2022/6865472
    Betamethasone is an important glucocorticoids (GCs), frequently used to cure allergies (such as asthma and angioedema), Crohn's disease, skin diseases (such as dermatitis and psoriasis), systemic lupus erythematosus, rheumatic disorders, and leukemia. Present investigation deals to find potential agonist of glucocorticoid receptors after biotransformation of betamethasone dipropionate (1) and to carry out the molecular docking and ADME analyses. Biotransformation of 1 was carried out with Launaea capitata (dandy) roots and Musa acuminate (banana) leaves. M. acuminate furnished low-cost value-added products such as Sananone dipropionate (2) in 5% yields. Further, biocatalysis of Sananone dipropionate (2) with M. acuminate gave Sananone propionate (3) and Sananone (4) in 12% and 7% yields, respectively. However, Sananone (4) was obtained in 37% yields from Launaea capitata. Compound 5 was obtained in 11% yield after β-elimination of propionic acid at C-17 during oxidation of compound 1. The structure elucidation of new compounds 2-5 was accomplished through combined use of X-ray diffraction and NMR (1D and 2D) studies. In addition to this, molecular docking and ADME analyses of all transformed products of 1 were also done. Compounds 1-5 showed -12.53 to -10.11 kcal/mol potential binding affinity with glucocorticoid receptor (GR) and good ADME profile. Moreover, all the compounds showed good oral bioavailability with the octanol/water partition coefficient in the range of 2.23 to 3.65, which indicated that compounds 1-5 were in significant agreement with the given criteria to be considered as drug-like.
    Matched MeSH terms: Biotransformation
  6. Alam MZ, Mahmat ME, Muhammad N
    PMID: 16317964
    A laboratory-scale study of bioconversion of local lignocellulosic material, oil palm biomass (OPB) was conducted by evaluating the enzyme production through microbial treatment in solid state bioconversion (SSB). OPB in the form of empty fruit bunches (EFB) was used as a solid substrate and treated with the white-rot fungus, Phanerochaete chrysosporium, to produce ligninase. The results showed that the highest ligninase activity of 400.27 U/liter was obtained at day 12 of fermentation. While the optimum study indicated the enzyme production of 1472.8 U/liter with moisture content of 50%, 578.7 U/liter with 10% v/w of inoculum size, and 721.8 U/liter with co-substrate concentration of 1% (w/w) at days 9, 9 and 12 of fungal treatment, respectively. The parameters glucosamine and reducing sugar were observed to evaluate the growth and substrate utilization in the experiment.
    Matched MeSH terms: Biotransformation
  7. Wang W, Shao Z
    Appl Microbiol Biotechnol, 2012 Apr;94(2):437-48.
    PMID: 22207216 DOI: 10.1007/s00253-011-3818-x
    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47ΔB) or Pseudomonas fluorescens KOB2Δ1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C(12) to C(24); three p450 genes were up-regulated by C(8)-C(16) n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C(24) to C(36)). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C(8)) to long (C(36)) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates.
    Matched MeSH terms: Biotransformation
  8. Chong CS, Sabir DK, Lorenz A, Bontemps C, Andeer P, Stahl DA, et al.
    Appl Environ Microbiol, 2014 Nov;80(21):6601-10.
    PMID: 25128343 DOI: 10.1128/AEM.01818-14
    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
    Matched MeSH terms: Biotransformation
  9. Ballouze R, Ismail MN, Abu Kassim NS, Salhimi SM, Mohamad I, Abd Mutalib NS, et al.
    Anal Bioanal Chem, 2024 Jan;416(2):545-557.
    PMID: 38040942 DOI: 10.1007/s00216-023-05061-3
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a persistent inflammation of the sinonasal mucosa. CRSwNP treatments are associated with inconsistent efficacy and recurrence of symptoms. Dynorphin 1-17 (DYN 1-17) and its fragments have been shown to modulate the immune response in various inflammatory conditions. This study aimed to investigate the effect of different pH and degrees of inflammation on DYN 1-17 metabolism in human CRSwNP tissues. DYN 1-17 was incubated with grade 3 and grade 4 inflamed tissues of CRSwNP patients at pH 5.5 and pH 7.4 over a range of incubation periods. The resulting fragments were identified using an ultra-performance liquid chromatography (UPLC) system coupled to quadrupole-time of flight (QTOF) mass spectrometry based on their accurate mass. The rate of DYN 1-17 fragmentation was slower at pH 5.5 in comparison to pH 7.4. The extent and rate of metabolism of DYN 1-17 were much lower in grade 3 inflamed tissue (31-32 fragments) than in grade 4 (34-41 fragments). N-Terminal fragments (DYN 1-15, 1-11, 1-10, and 1-6) were metabolized slower at pH 5.5 as compared to pH 7.4. DYN 1-12, 1-8, 2-10, 4-10, 5-10, and 8-14 were only observed under the inflammatory pH while DYN 5-17 and 6-17 were only identified upon incubation with grade 4 CRSwNP tissues. DYN 1-17 metabolism was significantly affected by the pH level and the severity of the inflammation of CRSwNP tissues, indicating the potential roles of DYN 1-17 and its fragments in modulating the inflammatory response and their avenue as therapeutics in future studies.
    Matched MeSH terms: Biotransformation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links