This paper aims to assess the influence of land use and land cover (LULC) indicators and population density on water quality parameters during dry and rainy seasons in a tourism area in Indonesia. This study applies least squares regression (OLS) and Pearson correlation analysis to see the relationship among factors, and all LULC and population density were significantly correlated with most of water quality parameter with P values of 0.01 and 0.05. For example, DO shows high correlation with population density, farm, and built-up in dry season; however, each observation point has different percentages of LULC and population density. The concentration value should be different over space since watershed characteristics and pollutions sources are not the same in the diverse locations. The geographically weighted regression (GWR) analyze the spatially varying relationships among population density, LULC categories (i.e., built-up areas, rice fields, farms, and forests), and 11 water quality indicators across three selected rivers (Ayung, Badung, and Mati) with different levels of tourism urbanization in Bali Province, Indonesia. The results explore that compared with OLS estimates, GWR performed well in terms of their R2 values and the Akaike information criterion (AIC) in all the parameters and seasons. Further, the findings exhibit population density as a critical indicator having a highly significant association with BOD and E. Coli parameters. Moreover, the built-up area has correlated positively to the water quality parameters (Ni, Pb, KMnO4 and TSS). The parameter DO is associated negatively with the built-up area, which indicates increasing built-up area tends to deteriorate the water quality. Hence, our findings can be used as input to provide a reference to the local governments and stakeholders for issuing policy on water and LULC for achieving a sustainable water environment in this region.
The paper explores the short-run and long-run asymmetric impact of fiscal decentralization, green energy, and economic policy uncertainty on environmental sustainability proxied by ecological footprint. Using the Nonlinear Autoregressive Distributed lag (NARDL) approach in selected five OECD countries, we find that ecological footprint responds to positive and negative fiscal decentralization asymmetrically in the long run and short run. However, the nature of the response varies significantly across countries. The result also suggests that green energy is a major factor in reducing the ecological footprint in all countries except Canada. Finally, economic policy uncertainty plays a negative and significant role in the ecological footprint in the UK, USA, and Germany while insignificant in Australia and Canada. Implications for effective environmental policies are discussed.
Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
The crucial role of environmental assessment quality has been recognised by environmental and sustainable development goals in addressing climate change challenges. By focusing on the key identifier of environmental assessment, progress can be made towards overcoming climate change issues effectively. The current study considers environmental commitments under COP28 to study the role of economic complexity, greenfield investments, and energy innovation in environmental degradation in newly industrialised economies from 1995 to 2021. We employ novel panel estimations from CS-ARDL, CS-DL, AMG, and CCEMG to confirm that economic growth and greenfield investments degrade environmental quality. On the other hand, energy innovation and urbanisation improve environmental sustainability. Lastly, we confirm the EKC hypothesis for economic complexity as well. Given the reported empirical findings, the study suggests policymakers must focus on economic complexity to transform industrial sectors' economic potential. Furthermore, foreign investment projects must be linked with environmental goals to increase renewable energy capacity.
The influence of tourism development and economic policy uncertainties on environmental sustainability is substantial. Promoting responsible tourism and using sustainable tourism practises, like offering eco-friendly lodging, is a key part of protecting natural habitats and lowering carbon footprints. Hence, this study tries to examine the relationship between tourism development, economic policy uncertainty, renewable energy, and natural resources on the ecological footprint of India during 1990-2022. This study applies a novel dynamic ARDL simulation approach for long-run and short-run analyses. The study also employs frequency-domain causality to check the causal relationship between the variables. The result reveals that tourism has a positive effect on the ecological footprint. Similarly, economic policy uncertainty has a positive and significant effect on the ecological footprint in India during the sample period. Additionally, natural resource rent shows a positive effect on the ecological footprint or deteriorating environmental quality in the short and long run in the sample period. However, renewable energy consumption indicates a negative effect on the ecological footprint. The results reveal that TDI and EPU have rejected the null hypothesis of no Granger cause in the long, medium, and short term. While renewable energy has a causal relationship with ecological footprints in both the long run and medium run, it is imperative for India to adopt measures that facilitate the advancement of sustainable tourism, with a particular focus on promoting environmentally friendly lodging options, enhancing public transportation systems, and implementing effective waste management strategies.
Energy is one of the prime factors in influencing the sustainable development of a country. Different energy sources play important roles in driving the income growth of different economic sectors such as industrial, agricultural, and services. Fossil fuels, however, have come under strong criticism for actively accelerating climate change. As such, it is imperative to investigate the contributions of various energy sources toward sustainable growth. With Malaysia as the test-bed, the present study analyzes the impact of energy prices on economic stability using the novel wavelet-based analysis. Specifically, the study analyzed the impact of crude oil, natural gas, and gasoline prices on the economic (brown) and green growth from 1995 to 2020. The results show that in continuous wavelet transform, the cone of influence of all five factors exhibits strong short-run variance and fluctuations from 2005 to 2013. However, the intensity of brown growth is more influential than green growth. Similarly, in wavelet coherence graphs, the downward right arrows indicate positively significant associations between crude oil prices, natural gas prices, and gasoline prices with brown and green growth. Additionally, wavelet-based Granger causality reveals a bidirectional causal relationship between all variables. The results thus strongly suggest that energy prices predominantly affect the economic (brown) and green growth progression of the Malaysian economy. The study concludes with some suggested implications to augment the country's sustainable growth.
Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.
The current study sought to determine the levels of radioactivity and heavy metal contamination in 22 dried fish samples collected in Chennai, Tamil Nadu. The study found that there were substantial heavy metals concentrations for Pb, Mn, Cr, Co, and Cd. The concentration of heavy metal Pb being alarmingly high (32.85 to 42.09 mg/kg), followed by Cd (2.18 mg/kg to 3.51 mg/kg) than the permissible limit of WHO (2.17 mg/kg) for Pb and (0.05 mg/kg) for Cd. In terms of radioactivity, the gross alpha activity in the dried fish samples ranged 6.25 ± 0.12 to 48.21 ± 0.11 Bg/kg with an average of 20.35 Bg/kg and with a gross beta activity from 6.48 ± 0.02 to 479.47 ± 0.65 Bg/kg, for an average of 136.83 Bg/kg. The study found that the internal radiation dose that people receive upon consuming the fish species Sphyraena obtusata, Rachycentron canadum, Lepidocephalichthys thermalis, Synodontidae, Carangoides malabaricus, Sardina pilchardus, Scomberomorus commerson, Sillago sihama, Gerres subfasciatus, and Amblypharyngodon mola is above the ICRP-recommended limit of less than 1 mSv/year. Annual gonadal dose equivalent (AGDE) and total excessive lifetime cancer risk (ELCR) ranged 0.488 µSv year-1 and 0.004 µSv year-1 respectively, the values of AGDE being higher than the global average value. The findings of the study indicate that the analyzed dried fish samples are contaminated with Pb and Cd, which shall pose cancer risk to the consumers as a result.
Fish biodiversity in Malaysia is under pressure due to overexploitation, pollution, and climatic stressors. Nevertheless, the information on fish biodiversity and species vulnerability status is not well documented in the region. Therefore, a study on fish species composition and abundance in the Malacca Strait of Malaysia has been conducted for the purpose of monitoring biodiversity, determining the risk of species extinction, and identifying factors influencing biodiversity distribution. The sampling was conducted based on a random stratified sampling method from the three zones of sampling locations, i.e., estuary, mangrove, and open sea area of Tanjung Karang and Port Klang of Malacca Strait. Higher species diversity was recorded at Tanjung Karang coastal and mangrove areas (H' = 2.71; H' = 1.64) than Port Klang coastal and mangrove areas (H' = 1.50, H' = 0.29), an indication that the Port Klang area is comparatively more vulnerable. The study also explored sampling location, habitat, and IUCN red list as the influencing factors for fish biodiversity. Applying IUCN red list, this study identified one Endangered and one Vulnerable species with the forecasted increasing landing for both species. Our findings suggest the urgent need for the implementation of conservation measures as well as the continuous monitoring of fish biodiversity in the area.
Untreated landfill leachate can harm the environment and human health due to its organic debris, heavy metals, and nitrogen molecules like ammonia. Microbial fuel cells (MFCs) have emerged as a promising technology for treating landfill leachate and generating energy. However, high concentrations of total ammonia-nitrogen (TAN), which includes both ammonia and the ammonium ion, can impede MFC performance. Therefore, maintaining an adequate TAN concentration is crucial, as both excess and insufficient levels can reduce power generation. To evaluate the worldwide research on MFCs using landfill leachate as a substrate, bibliometric analysis was conducted to assess publication output, author-country co-authorship, and author keyword co-occurrence. Scopus and Web of Science retrieved 98 journal articles on this topic during 2011-2022; 18 were specifically evaluated and analysed for MFC ammonia inhibition. The results showed that research on MFC using landfill leachate as a substrate began in 2011, and the number of related papers has consistently increased every 2 years, totaling 4060 references. China, India, and the USA accounted for approximately 60% of all global publications, while the remaining 40% was contributed by 70 other countries/territories. Chongqing University emerged as one of the top contributors among this subject's ten most productive universities. Most studies found that maintaining TAN concentrations in the 400-800 mg L-1 in MFC operation produced good power density, pollution elimination, and microbial acclimatization. However, the database has few articles on MFC and landfill leachate; MFC ammonia inhibition remains the main factor impacting system performance. This bibliographic analysis provides excellent references and future research directions, highlighting the current limitations of MFC research in this area.
This study examines the impact of government spending, income, and tourism consumption on CO2 emissions in the 50 US states through a novel theoretical model derived from the Armey Curve model and the Environmental Kuznets Curve hypothesis. The findings of this research are essential for policymakers to develop effective strategies for mitigating environmental pollution. Utilizing panel cointegration analysis, the study provides valuable insights into whether continued increases in government spending contribute to higher pollution levels. By identifying the threshold point of spending as a percentage of GDP, policymakers can make informed decisions to avoid the trade-off between increased spending and environmental degradation. For instance, the analysis reveals that Hawaii's tipping point is 16.40%. The empirical results underscore the importance of adopting sustainable policies that foster economic growth while minimizing environmental harm. These findings will aid policymakers in formulating targeted and efficient approaches to tackle climate change and promote long-term environmental sustainability in the United States. Moreover, the impact of tourism development on CO2 emissions varies across states, with some US states experiencing a decrease while others see an increase.
The study proposes to examine how environmental, social and governance disclosure (ESG) affect the financial performance (FP) of Indian firms. Furthermore, it aims to evaluate the moderation impact of CEO power (CEOP) on the association between ESG on the FP. The study's target population is all firms indexed in NIFTY 100, representing the top one hundred firms by market capitalisation from 2017 to 2021. Data relating to ESG were collected and built based on the available data on Refinitiv Eikon Database. Results reveal that EDI positively and significantly impacts the ROE and TQ of Indian firms. Furthermore, SDI and GDI negatively and significantly affect the ROE and TQ of Indian firms. Moreover, ESG and CEOP have a significant impact on ROE. Nevertheless, ESG has a negative but highly significant impact on ROE, whilst it has a negative and low considerable impact on the TQ of Indian firms. Nonetheless, CEOP does not moderate the association between ESG and FP measured by ROE and TQ. This research contributes to the existing literature by introducing a moderator variable that has not been used in the Indian context; CEO power, which provides stakeholders and regulators with useful findings that would encourage firms to create an ESG committee to enhance ESG disclosure to compete on the world market and reach the United Nations (UN) Sustainable goal 2030. Furthermore, this paper provides insightful recommendations for creating an ESG legal framework for decision-makers.
The enhancement of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) performance in energy retrieval from caffeine containing wastewater has been explored via various operating conditions (hydraulic retention time (HRT), multianode (MA), multicathode current collector (MC), external resistance). The anaerobic decaffeination and COD removal improved by 37 and 12% as the HRT extended from 1 to 5 d. The increment in contact time between the microbes and organic substrates promoted the degradation and contributed to higher power output (3.4-fold), CE (eightfold), and NER (14-16-fold). The MA and MC connections facilitated the electron transfer rate and the degradation rate of organic substrates in the multiple anodic zones, which enhanced the removal efficiency in the anaerobic compartment (Caffeine: 4.2%; COD: 7.4%) and led to higher electricity generation (Power: 4.7-fold) and energy recovery (CE: 1.4-fold; NER: 2.3-2.5-fold) compared to SA. The lower external resistance favored the growth of electrogens and induced higher electron flux, where the best treatment performance and electricity production was obtained when the external resistance approached the internal resistance. Overall, it was noteworthy that the optimum operating conditions were achieved with 5 d HRT, MA, and MC connection along with external resistance of 200 Ω, which significantly outperformed the initial conditions (1 d HRT, SA connection, and 1000 Ω) by 43.7 and 29.8% of caffeine and COD removal in the anaerobic compartment, respectively as well as 14-fold of power generation.
The spatial effects of agricultural market integration on industrial agglomeration are an important field of regional economic. This paper collected the data of agricultural market integration and industrial agglomeration in 31 provinces in China from 2010 to 2019, analyzed the spatial effects of the two by constructing a dynamic spatial Dubin model, and explored its long-term and short-term effects of the spatial effects. The results show the following: (1) the primary terms of agricultural market integration were negative and the secondary terms were positive. The impact of agricultural market integration on local industrial agglomeration had a "U-shaped" characteristic. Whether in the short-term or long-term, there was a significant direct effect of "suppression to promotion." (2) The agricultural market integration had a spatial spillover effect on industrial agglomeration in the neighboring areas. This effect had an "inverted U-shaped" characteristic. Whether in the short-term or long-term, there was a prominent spatial spillover effect of "promotion to suppression." (3) For direct effects, the short-term direct effects of agricultural market integration on industrial agglomeration were - 0.0452 and 0.0077, and the long-term direct effects were - 0.2430 and 0.0419. For spatial spillover effects, the short-term spatial spillover effects were 0.0983 and - 0.0179, and the long-term spatial spillover effects were 0.4554 and - 0.0827. The long-term effects were greater than the short-term effects. This paper provides empirical evidence for the effects of agricultural market integration on industrial agglomeration in different regions, and exploring the development of agricultural agglomeration in the long-term.
At present, a photovoltaic (PV) system takes responsibility to reduce the risk of global warming and generate electricity. However, the PV system faces numerous problems to track global maximum peak power (GMPP) owing to the nonlinear nature of the environment especially due to partial shading conditions (PSC). To solve these difficulties, previous researchers have utilized various conventional methods for investigations. Nevertheless, these methods have oscillations around the GMPP. Hence, a new metaheuristic method such as an opposition-based equilibrium optimizer (OBEO) algorithm is used in this work for mitigating the oscillations around GMPP. To find the effectiveness of the proposed method, it can be evaluated with other methods such as SSA, GWO, and P&O. As per the simulation outcome, the proposed OBEO method provides maximum efficiency against all other methods. The efficiency for the proposed method under dynamic PSC is 95.09% in 0.16 s, similarly, 96.17% for uniform PSC and 86.25% for complex PSC.
Numerous studies have demonstrated that the development of low-carbon economy and industrial restructuring cannot occur in a coordinated manner. However, academic literature does not provide further explanations for this phenomenon. In this paper, we introduce a novel decomposition method to reassess the relationship between industrial restructuring and low-carbon economy, which yields similar findings. Next, we construct a straightforward theoretical model to investigate two fundamental reasons that interrelate with this issue: excessively high proportion of secondary sector and excessive carbon intensity of tertiary sector. Finally, we implement a rigorous causal identification using three-dimensional panel data at the provincial, industrial, and yearly levels by undergoing multiple robustness tests and mitigating endogeneity issues. Our heterogeneity tests suggest that the impact of industrial restructuring is greater in high-polluting industries, the Eastern region, and non-digital pilot regions. Overall, our theoretical and empirical analysis serves as a vital reference for other developing and developed countries to attain harmonious development between low-carbon economy and industrial restructuring.
The objective of this paper is to investigate the impact of sustainability reporting (SR) quality on the corporate financial performance (CFP) of initial public offering (IPO) in Malaysia. This research applies the OLS and WLS regressions through content analysis of annual reports. The data was collected from Datastream, where 131 IPOs listed companies on Bursa Malaysia between 2007 and 2017. The findings indicate a positive and negative association between SR and its components with CFP. It is found that there is a negative and significant association between the SR characteristics of employees and products with CFP. However, it was discovered that the societal and environmental components have a significantly positive association with CFP. This finding shows that SR practices might be seen as an attempt to enhance IPO performance. The findings can facilitate financial institutions and regulatory agencies in driving responsibility on the part of companies regarding SR issues. The firms should involve SR practices in their SR decisions. Thus, this study emphasises the significance of combining social and organisational activities.
Over the past decade, financial development has been a prominent debate for stakeholders and policymakers alike. Financial development are prerequisites for innovation and CO2 emissions, followed by the Paris Climate Summit (COP21). In the wake of the global economic recession, financial development continues to address CO2 emissions efforts. However, scant attention is paid to the role of financial development in innovation and CO2 emissions relationship, especially in the context of developing countries. The current study explores the relationship between innovation and CO2 emissions through moderating role of financial development, especially in the context of developing countries. Utilizing a dynamic panel threshold approach, the current study utilizes data from 26 countries between 1990 and 2014. Our findings reveal that innovation positively impacts the reduction of carbon emissions when the stock market value-to-private credit ratio is below 1.71, while an opposite effect is observed when the ratio exceeds this threshold. We believe that the findings broaden the debate on financial development in developing countries. The results revealed that developing countries should allocate their domestic resources to financial development and poverty reduction, rather than solely addressing environmental concerns. In addition, a more sustainable balance between innovation and CO2 emissions could benefit through financial development and the impact may be the result in terms of achieving sustainable development.