Displaying publications 81 - 100 of 172 in total

Abstract:
Sort:
  1. Lim MJ, Shahri NNM, Taha H, Mahadi AH, Kusrini E, Lim JW, et al.
    Carbohydr Polym, 2021 May 15;260:117806.
    PMID: 33712152 DOI: 10.1016/j.carbpol.2021.117806
    Chitin-encapsulated cadmium sulfide quantum dots (CdS@CTN QDs) were successfully synthesized from chitin and Cd(NO3)2 precursor using the colloidal chemistry method, toward the development of biocompatible and biodegradable QDs for biomedical applications. CdS@CTN QDs exhibited the nanocrystalline cubic CdS encapsulated by α-chitin. The average particle size of CdS@CTN QDs was estimated using empirical Henglein model to be 3.9 nm, while their crystallite size was predicted using Scherrer equation to be 4.3 nm, slightly larger compared to 3-mercaptopropionic acid-capped CdS QDs (3.2 and 3.6 nm, respectively). The mechanism of formation was interpreted based on the spectroscopic data and X-ray crystal structures of CdS@CTN QDs fabricated at different pH values and mass ratios of chitin to Cd(NO3)2 precursor. As an important step to explore potential biomolecular and biological applications of CdS@CTN QDs, their antibacterial activities were tested against four different bacterial strains; i.e. Escherichia coli, Bacillus subtillus, Staphylococcus aureus and Pseudomonas aeruginosa.
  2. Loh GO, Tan YT, Peh KK
    Carbohydr Polym, 2014 Jan 30;101:505-10.
    PMID: 24299805 DOI: 10.1016/j.carbpol.2013.09.084
    The effect of hydroxypropyl methylcellulose (HPMC) concentration on β-cyclodextrin (β-CD) solubilization of norfloxacin was examined. The solubility and dissolution of norfloxacin/β-CD and norfloxacin/β-CD/HPMC inclusion complexes were studied. The presence of β-CD increased significantly the solubility and dissolution of norfloxacin. The addition of HPMC until 5% (w/w) improved the solubilization of norfloxacin but further addition above 5% (w/w), decreased norfloxacin solubilization. Fourier transformed Infra-red (FTIR) showed that norfloxacin was successfully included into β-CD. Differential scanning calorimetry (DSC) showed that the norfloxacin endothermic peak shifted to a lower temperature with reduced intensity indicating the formation of inclusion complex. The addition of HPMC reduced further the intensity of norfloxacin endothermic peak. Most of the sharp and intense peaks of norfloxacin disappeared with the addition of HPMC. In conclusion, the concentration of hydrophilic polymer used to enhance β-CD solubilization of poorly soluble drugs is very critical.
  3. Low LE, Tey BT, Ong BH, Chan ES, Tang SY
    Carbohydr Polym, 2017 Jan 02;155:391-399.
    PMID: 27702526 DOI: 10.1016/j.carbpol.2016.08.091
    We studied the formation of palm olein-in-water (O/W) Pickering emulsion stabilized by Fe3O4-cellulose nanocrystals (MCNC) nanocomposites obtained by ultrasound assisted in-situ co-precipitation method. The synthesized MCNC nanocomposites successfully stabilized Pickering emulsion with dual responses. The magnetic tests revealed a direct-relation between attractability of MCNC-stabilized Pickering emulsions and the emulsion droplet diameter. The Pickering emulsions were stable under pH ranging from 3 to 6. The stability substantially reduced around pH 8-10, and regained slowly when approaching pH 13. From microscopic and mastersizer analysis, monodisperse emulsion droplets were noticed at pH 3-6, and 13, while polydisperse emulsion were obtained at pH 8-12. The Pickering emulsions prepared at pH 6 are stable up to 14 days, while Pickering emulsions at pH 8 experienced coalescence. In this study, the dual stimuli-responsive Pickering emulsion stabilized by MCNC may hold potentials for biomedical and drug delivery as new generation of smart nanotherapeutic carrier.
  4. M R S, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A
    Carbohydr Polym, 2019 Mar 01;207:108-121.
    PMID: 30599990 DOI: 10.1016/j.carbpol.2018.11.083
    Designing environmentally friendly materials from natural resources represents a great challenge in the last decade. However, the lack of fundamental knowledge in the processing of the raw materials to fabricate the composites structure is still a major challenge for potential applications. Natural fibers extracted from plants are receiving more attention from researchers, scientists and academics due to their use in polymer composites and also their environmentally friendly nature and sustainability. The natural fiber features depend on the preparation and processing of the fibers. Natural plant fibers are extracted either by mechanical retting, dew retting and/or water retting processes. The natural fibers characteristics could be improved by suitable chemicals and surface treatments. This survey proposes a detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers. We summarize major findings from the literature and the treatment effects on the properties of the natural fibers are being highlighted.
  5. Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM
    Carbohydr Polym, 2017 Jan 20;156:175-181.
    PMID: 27842811 DOI: 10.1016/j.carbpol.2016.09.021
    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h-1) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity.
  6. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M
    Carbohydr Polym, 2018 Feb 01;181:650-658.
    PMID: 29254019 DOI: 10.1016/j.carbpol.2017.11.099
    The exploration of new natural fibers in the field of polymer composites can contribute to increase the invention of natural reinforcements and expand their use in possible applications. In the present work, the physico-chemical, thermal, tensile and morphological properties of Furcraea foetida (FF) fiber are presented for the first time. Chemical analysis results shows that FF has relatively higher cellulose (68.35%) with lower hemicelluloses (11.46%) and lignin (12.32%). Structural analysis of FF was conducted by Fourier transform infrared and13C (CP-MAS) nuclear magnetic resonance spectroscopy. X-ray diffraction (XRD) analysis evidenced that FF has crystallinity index of 52.6% with crystalline size of 28.36nmThe surface morphology of FF was investigated by scanning electron microscopy (SEM), energy dispersive X-ray micro analyzer (EDX) and atomic force microscopy (AFM). The thermogravimetric analysis (TGA) reveals thermal constancy of the fiber upto 320.5°C with the kinetic activation energy of 66.64kJ/mol, which can be used as reinforcements in thermoplastic green composite whose working temperatures is below 300°C. The FF results were compared with those of other natural fibers, and indicated as a suitable alternative source for composite manufacture.
  7. Mat Zin MI, Jimat DN, Wan Nawawi WMF
    Carbohydr Polym, 2022 Apr 01;281:119038.
    PMID: 35074115 DOI: 10.1016/j.carbpol.2021.119038
    We evaluate the physiochemical properties of chitin nanopaper derived from three commonly cultivated mushrooms: shiitake (Lentinula edodes), oyster (Pleurotus ostreatus), and enoki (Flammulina velutipes). Mild alkaline extraction of fungal sample yields higher chitin recovery per dry weight (23-35%) compared to crustacean source (9.7%). Our extract readily defibrillates into 15-20 nm width fiber after 5 min blending in domestic kitchen blender, implying a simple and cost-effective nanofiber preparation. Enoki nanopaper was found to be more crystalline and possess slightly higher modulus and tensile strength (Eenoki = 2.83 GPa, σenoki = 51 MPa) compared to oyster and shiitake nanopaper (Eoyster = 2.28 GPa, σoyster = 45 MPa; Eshiitake = 2.59 GPa, σshitake = 43 MPa). However, oyster nanopaper exhibit higher toughness (1.92 MJ/m3) and larger strain at break (5.63%) because of their relatively smaller fibers promote a denser fibrous network that can sustain and absorb higher external loading.
  8. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
  9. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
  10. Mhd Haniffa MAC, Ching YC, Chuah CH, Yong Ching K, Nazri N, Abdullah LC, et al.
    Carbohydr Polym, 2017 Oct 01;173:91-99.
    PMID: 28732923 DOI: 10.1016/j.carbpol.2017.05.084
    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2Ihelical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose.
  11. Misman MA, Azura AR, Hamid ZA
    Carbohydr Polym, 2015 Sep 5;128:1-10.
    PMID: 26005134 DOI: 10.1016/j.carbpol.2015.04.004
    Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade.
  12. Moeinzadeh R, Jadval Ghadam AG, Lau WJ, Emadzadeh D
    Carbohydr Polym, 2019 Dec 01;225:115212.
    PMID: 31521264 DOI: 10.1016/j.carbpol.2019.115212
    In this work, nanocomposite ultrafiltration (UF) membranes were synthesized through addition of different quantities of amino-functionalized nanocrystalline cellulose (NCs) in order to improve membrane anti-fouling resistance against oil depositions. The characterization results demonstrated that the overall porosity and hydrophilicity of the membranes were improved significantly upon addition of NCs despite a decrease in the pore size of nanocomposite membranes. The UF performance results showed that the nanocomposite membrane incorporated with 1 wt% NCs achieved an optimal water flux improvement, i.e., approximately 43% higher than the pristine membrane. Such nanocomposite membrane also exhibited promising oil rejection (>98.2%) and excellent water flux recovery rate of ˜98% and ˜85% after one and four cycles of treating 250-ppm oil-in-water emulsion solution, respectively. The desirable anti-fouling properties of nanocomposite membrane can be attributed to the existence of hydrophilic functional groups (-OH) on the surface of membrane stemming from addition of NCs that renders the membrane less vulnerable to fouling during oil-in-water emulsion treatment.
  13. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M
    Carbohydr Polym, 2013 Apr 2;93(2):628-34.
    PMID: 23499105 DOI: 10.1016/j.carbpol.2013.01.035
    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
  14. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF
    Carbohydr Polym, 2014 Dec 19;114:312-320.
    PMID: 25263896 DOI: 10.1016/j.carbpol.2014.08.025
    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.
  15. Mohamed A, Ardyani T, Bakar SA, Sagisaka M, Umetsu Y, Hussin MRM, et al.
    Carbohydr Polym, 2018 Dec 01;201:48-59.
    PMID: 30241844 DOI: 10.1016/j.carbpol.2018.08.040
    A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of single chain anionic surfactant ionic liquids (SAILs). The surfactant ionic liquids are synthesized from conventional organic surfactant anions and a 1-butyl-3-methyl-imidazolium cation. For the first time the combination of SAILs and cellulose was used to directly exfoliate graphite. The ionic liquid 1-butyl-3-methyl-imidazolium dodecylbenzenesulfonate (BMIM-DBS) was shown to have notable affinity for graphene, demonstrating improved electrical properties of the conductive cellulose paper. The presence of BMIM-DBS in the system promotes five orders of magnitude enhancement of the paper electrical conductivity (2.71 × 10-5 S cm-1) compared to the native cellulose (1.97 × 10-10 S cm-1). A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrices. Studies into aqueous aggregation behavior using small-angle neutron scattering (SANS) point to the ability of this compound to act as a bridge between graphene and cellulose, and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. The simple and feasible process for producing conductive paper described here is attractive for the possibility of scaling-up this technique for mass production of conductive composites containing graphene or other layered materials.
  16. Mohamed MA, Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Jamil SM
    Carbohydr Polym, 2015 Nov 20;133:429-37.
    PMID: 26344299 DOI: 10.1016/j.carbpol.2015.07.057
    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application.
  17. Mohamed MA, W Salleh WN, Jaafar J, Mohd Hir ZA, Rosmi MS, Abd Mutalib M, et al.
    Carbohydr Polym, 2016 08 01;146:166-73.
    PMID: 27112862 DOI: 10.1016/j.carbpol.2016.03.050
    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.
  18. Mohamed MA, W Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Mohamad AB, et al.
    Carbohydr Polym, 2017 Feb 10;157:1892-1902.
    PMID: 27987909 DOI: 10.1016/j.carbpol.2016.11.078
    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H2SO4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively.
  19. Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, et al.
    Carbohydr Polym, 2020 Jun 15;238:116185.
    PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185
    Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
  20. Mohd Ishak NA, Khalil I, Abdullah FZ, Muhd Julkapli N
    Carbohydr Polym, 2020 Oct 15;246:116553.
    PMID: 32747237 DOI: 10.1016/j.carbpol.2020.116553
    Catalytic ionic liquid hydrolysis of cellulosic material have been considered as a green and highly efficient dissolution process. However, application of a pre-treatment process, i.e; ultrasonication enhances the hydrolysis of cellulose in ionic liquid by providing mechanical force. In this paper, we describe the impact of both chemical and mechanical approaches to produce nanocrytalline cellulose (NCC) with anticipated particle size, and crystallinity with improved yields. The ultrasonication treatment was evaluated in terms of treatment time and vibration amplitude. It was found that the lowest ultrasonication time (5 min) produced the NCC of highest crystallinity (73 %), but the lowest yield (84 %). In contrary, the highest ultrasonication vibration amplitude at 90 % produced NCC with highest crystallinity value (67 %) as well as yields (90 %). It concludes that ultrasonic pre-treatment improves the hydrolysis process of cellulose in ionic liquid with increasing yield and crystallinity of NCC.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links