Displaying publications 81 - 100 of 128 in total

Abstract:
Sort:
  1. Bakrim S, El Omari N, El Hachlafi N, Bakri Y, Lee LH, Bouyahya A
    Foods, 2022 Oct 23;11(21).
    PMID: 36359936 DOI: 10.3390/foods11213323
    Given the stochastic complexity of cancer diseases, the development of chemotherapeutic drugs is almost limited by problems of selectivity and side effects. Furthermore, an increasing number of protective approaches have been recently considered as the main way to limit these pathologies. Natural bioactive compounds, and particularly dietary phenolic compounds, showed major protective and therapeutic effects against different types of human cancers. Indeed, phenolic substances have functional groups that allow them to exert several anti-cancer mechanisms, such as the induction of apoptosis, autophagy, cell cycle arrest at different stages, and the inhibition of telomerase. In addition, in vivo studies show that these phenolic compounds also have anti-angiogenic effects via the inhibition of invasion and angiogenesis. Moreover, clinical studies have already highlighted certain phenolic compounds producing clinical effects alone, or in combination with drugs used in chemotherapy. In the present work, we present a major advance in research concerning the mechanisms of action of the different phenolic compounds that are contained in food medicinal plants, as well as evidence from the clinical trials that focus on them.
  2. Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W
    Foods, 2022 Oct 25;11(21).
    PMID: 36359962 DOI: 10.3390/foods11213349
    Cancer is exerting an immense strain on the population and health systems all over the world. Green tea because of its higher simple catechin content (up to 30% on dry weight basis) is greatly popular as an anti-cancer agent which is found to reduce the risks of cancer as well as a range of other diseases. In addition, several in vitro and in vivo studies have shown that green tea possesses copious health benefits like anti-diabetic, anti-obese, anti-inflammatory, neuro-protective, cardio-protective, etc. This review highlights the anti-carcinogenic effects of green tea catechins integrating the recent information to gain a clear concept. Special emphasis was given to the effectiveness of green tea polyphenols (GTP) in the prevention of cancer. Overall, green tea has been found to be effective to reduce the risks of breast cancer, ovarian cancer, liver cancer, colorectal cancer, skin cancer, prostate cancer, oral cancer, etc. However, sufficient information was not found to support that green tea consumption reduces the risk of lung cancer, esophageal cancer, or stomach cancer. The exciting data integrated into this article will increase interest in future researchers to garner more fruitful information on the relevant topics.
  3. Shakil MH, Trisha AT, Rahman M, Talukdar S, Kobun R, Huda N, et al.
    Foods, 2022 Oct 25;11(21).
    PMID: 36359973 DOI: 10.3390/foods11213355
    Nitrite is one of the most widely used curing ingredients in meat industries. Nitrites have numerous useful applications in cured meats and a vital component in giving cured meats their unique characteristics, such as their pink color and savory flavor. Nitrites are used to suppress the oxidation of lipid and protein in meat products and to limit the growth of pathogenic microorganisms such as Clostridium botulinum. Synthetic nitrite is frequently utilized for curing due to its low expenses and easier applications to meat. However, it is linked to the production of nitrosamines, which has raised several health concerns among consumers regarding its usage in meat products. Consumer desire for healthier meat products prepared with natural nitrite sources has increased due to a rising awareness regarding the application of synthetic nitrites. However, it is important to understand the various activities of nitrite in meat curing for developing novel substitutes of nitrites. This review emphasizes on the effects of nitrite usage in meat and highlights the role of nitrite in the production of carcinogenic nitrosamines as well as possible nitrite substitutes from natural resources explored also.
  4. Fadimu GJ, Farahnaky A, Gill H, Olalere OA, Gan CY, Truong T
    Foods, 2022 Oct 26;11(21).
    PMID: 36359988 DOI: 10.3390/foods11213375
    The use of natural ingredients for managing diabetes is becoming more popular in recent times due to the several adverse effects associated with synthetic antidiabetic medications. In this study, we investigated the in vitro antidiabetic potential (through inhibition of α-glucosidase (AG) and α-amylase (AA)) of hydrolysates from lupin proteins pretreated with ultrasound and hydrolyzed using alcalase (ACT) and flavourzyme (FCT). We further fractionated ACT and FCT into three molecular weight fractions. Unfractionated ACT and FCT showed significantly (p < 0.05) higher AG (IC50 value = 1.65 mg/mL and 1.91 mg/mL) and AA (IC50 value = 1.66 mg/mL and 1.98 mg/mL) inhibitory activities than their ultrafiltrated fractions, where lower IC50 values indicate higher inhibitory activities. Then, ACT and FCT were subjected to peptide sequencing using LC-MS-QTOF to identify the potential AG and AA inhibitors. Molecular docking was performed on peptides with the highest number of hotspots and PeptideRanker score to study their interactions with AG and AA enzymes. Among the peptides identified, SPRRF, FE, and RR were predicted to be the most active peptides against AG, while AA inhibitors were predicted to be RPR, PPGIP, and LRP. Overall, hydrolysates prepared from lupin proteins using alcalase and flavourzyme may be useful in formulating functional food for managing diabetics.
  5. Somjid P, Panpipat W, Cheong LZ, Chaijan M
    Foods, 2022 Oct 30;11(21).
    PMID: 36360059 DOI: 10.3390/foods11213445
    This work comparatively investigated the effects of different levels (0, 1, 3, and 5%, w/w) of cricket protein powder (CP) and soy protein isolate (SPI) on the gel properties of mackerel surimi. Both SPI and CP enhanced the rheological properties of surimi pastes during heating, as indicated by the increase in G' and G″ and the decrease in tan δ. With increasing SPI content, the proteolytic inhibition, gel properties, water-holding capacity, and textural profiles of surimi gel were markedly enhanced. Molecular driving-force results showed that SPI markedly promoted the hydrophobic interaction, while disulfide bonds were dominant in CP-added gel. However, the whiteness of surimi gels tended to decrease with the increased levels of both additives, in particular CP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that SPI hindered the polymerization of myosin heavy chain while CP participated in the formation of non-disulfide covalent bonds with actin. Fourier transform infrared (FTIR) spectra indicated that CP and SPI did not influence the secondary structure of proteins in surimi. Scanning electron microscopy (SEM) demonstrated that CP or SPI induced the myofibrillar protein to form smoother and compact gel network structures. Overall acceptability of the mackerel surimi gel can be improved by the incorporation of 5% SPI while CP had a negative impact on several parameters. However, CP showed the remarkable ability to prevent the lipid oxidation of the gel after storage at 4 °C for 7 days. Overall, both SPI and CP demonstrated positive impacts on the gelling characteristics of mackerel surimi; however, SPI was more advantageous than CP in terms of the gel-strengthening effect and sensory qualities. This study offered a potential use for plant and insect proteins as functional and nutritional ingredients for the production of dark-fleshed fish surimi.
  6. Wai SN, How YH, Saleena LAK, Degraeve P, Oulahal N, Pui LP
    Foods, 2022 Nov 10;11(22).
    PMID: 36429174 DOI: 10.3390/foods11223583
    Single-use synthetic plastics that are used as food packaging is one of the major contributors to environmental pollution. Hence, this study aimed to develop a biodegradable edible film incorporated with Limosilactobacillus fermentum. Investigation of the physical and mechanical properties of chitosan (CS), sodium caseinate (NaCas), and chitosan/sodium caseinate (CS/NaCas) composite films allowed us to determine that CS/NaCas composite films displayed higher opacity (7.40 A/mm), lower water solubility (27.6%), and higher Young's modulus (0.27 MPa) compared with pure CS and NaCas films. Therefore, Lb. fermentum bacteria were only incorporated in CS/NaCas composite films. Comparison of the physical and mechanical properties of CS/NaCas composite films incorporated with bacteria with those of control CS/NaCas composite films allowed us to observe that they were not affected by the addition of probiotics, except for the flexibility of films, which was improved. The Lb. fermentum incorporated composite films had a 0.11 mm thickness, 17.9% moisture content, 30.8% water solubility, 8.69 A/mm opacity, 25 MPa tensile strength, and 88.80% elongation at break. The viability of Lb. fermentum after drying the films and the antibacterial properties of films against Escherichia coli O157:H7 and Staphylococcus aureus ATCC 29213 were also evaluated after the addition of Lb. fermentum in the composite films. Dried Lb. fermentum composite films with 6.65 log10 CFU/g showed an inhibitory effect against E. coli and S. aureus (0.67 mm and 0.80 mm inhibition zone diameters, respectively). This shows that the Lb.-fermentum-incorporated CS/NaCas composite film is a potential bioactive packaging material for perishable food product preservation.
  7. Shaik MI, Azhari MF, Sarbon NM
    Foods, 2022 Nov 24;11(23).
    PMID: 36496605 DOI: 10.3390/foods11233797
    The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
  8. Haron H, Zainal Arifen ZN, Shahar S, Mohamad H, Mohd Yazid SFZ, Michael V, et al.
    Foods, 2022 Nov 24;11(23).
    PMID: 36496599 DOI: 10.3390/foods11233791
    Street food is a major source of food in middle- and low-income countries as it is highly accessible and inexpensive. However, it is usually perceived as unhealthy due to the high levels of sodium, sugar, and fat content. However, there is little analytical data on the sodium levels in the street foods of Malaysia. This study started with a survey to determine the most frequently available street foods in every state in Malaysia, followed by food sampling and the analysis of sodium (reported mg/100 g sample). Street food in the snack category contained the highest amount of sodium (433 mg), followed by main meals (336.5 mg) and desserts (168 mg). Approximately 30% of the local street food in this study was deep-fried. Snacks from processed food (8%) contained high sodium content (500−815 mg). Fried noodles and noodle soup contained the highest amount of sodium (>2000 mg sodium) based on per serving. Most main dishes that use a variety of sauces contained high amounts of sodium. These findings were recorded in the Malaysian Food Composition Database. Moreover, this study could raise awareness and serve as baseline data for future interventions on the sodium content in the street foods of Malaysia.
  9. Chumsri P, Panpipat W, Cheong LZ, Nisoa M, Chaijan M
    Foods, 2022 Nov 27;11(23).
    PMID: 36496635 DOI: 10.3390/foods11233826
    A thorough investigation of the viability of rice starch conjugation with three different phenolic compounds-gallic acid, sinapic acid, and crude Mon-pu (Glochidion wallichianum Muell Arg) (MP) extract-was conducted using a variety of developed methods which modified the techno-functionality and digestibility of the end product. With and without the aid of ultrasonication (US), phenolic compounds were complexed with hydrothermally pre-gelatinized rice starch prepared using distilled water or plasma-activated water (PAW). The in vitro digestibility, structural features, rheological and thermal properties, and in vitro antioxidant activity of starch-phenolic complexes were evaluated. The US-assisted starch-MP complex in water had the highest complexing index (CI) value (77.11%) and resistant starch (RS) content (88.35%), resulting in a more compact and stable ordered structure. In all complexes, XRD revealed a new minor crystalline region of V-type, which was stabilized by hydrogen bonding as defined by FTIR and H1-NMR. Polyphenols caused a looser gel structure of starch, as imaged by a scanning electron microscope (SEM). Starch-phenolic complexes outperformed other complexes in terms of in vitro antioxidant activity. Gallic acid addition to starch molecules boosted DPPH scavenging activity, notably when synthesized in PAW regardless of US assistance, although having lower CI and RS values than the MP complex. Therefore, this research lays the groundwork for the efficient production of functional food ingredients based on rice starch and polyphenols.
  10. Zawani CJ, Nor-Khaizura MAR, Mahyudin NA, Ismail-Fitry MR, Nirmal NP
    Foods, 2022 Dec 08;11(24).
    PMID: 36553712 DOI: 10.3390/foods11243971
    Meat spoilage caused by temperature abuse is a major problem for producers, retailers, and consumers that can generate large economic losses to industries. Microbial growth of Pseudomonas spp. is the main source of spoilage during storage. Cinnamon has antimicrobial properties that may potentially be used to reduce the spoilage caused by Pseudomonas. The objectives of this study were to determine the inhibitory effect of cinnamon extract (CE) against Pseudomonas aeruginosa (ATCC 27853) and evaluate the treatment of CE on meat quality during different storage temperatures (5 °C, 10 °C, 15 °C, and 25 °C). The anti-Pseudomonas result showed that 100% (w/v) CE concentration produced a 13.50 mm zone of inhibition in a disc diffusion assay. The minimum inhibitor concentration (MIC) of CE was noted at 25% (v/v), whereas the minimum bactericidal concentration (MBC) value was observed at 50% (v/v) concentration of CE. The time-kill showed the growth of P. aeruginosa decreased from 7.64 to 5.39 log CFU/mL at MIC concentration. Total phenolic content and IC50 value of the cinnamon extract was expressed as 6.72 ± 0.87 mg GAE/g extract and 0.15 mg/mL, respectively. When the meat was marinated with 50% (v/v) CE and stored at various temperatures, the total viable count (TVC) and growth of Pseudomonas spp. were lowered as compared to the control sample. However, the reduction in microbial count in all samples was influenced by the storage temperature, where the lowered microbial count was noted in the sample treated with CE and stored at 5 and 10 °C for 48 h. The pH of meat treated with or without CE ranged from pH 5.74 to 6.48. The sensory attributes of colour, texture, and overall acceptability have a significant difference, except for odour, between marinated meat and control. The results indicate that the use of cinnamon extract as the marination agent for meat could reduce the growth of Pseudomonas spp. and therefore assist in extending the shelf life of meat at 5 and 10 °C storage temperatures.
  11. Chan PT, Matanjun P, Budiman C, Shapawi R, Lee JS
    Foods, 2022 Dec 09;11(24).
    PMID: 36553733 DOI: 10.3390/foods11243991
    The heads and bones of hybrid groupers are potential precursors for angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. The aim of this study was to isolate the dual-action peptides from the Alcalase-treated head and bone hydrolysate of hybrid groupers followed by identification of the novel peptides. The stability of these peptides against stimulated in vitro gastrointestinal digestion (SGID) was also determined. Fraction HB-IV (less than 1 kDa) obtained from ultrafiltration showed the strongest ACE-inhibition ability (IC50: 0.28 mg/mL), which was comparable to the potency of the commercial supplement, PeptACE (IC50: 0.22 mg/mL). This fraction also demonstrated the highest hydroxyl radical scavenging and metal-chelating activities. However, further fractionation of HB-IV by a series of chromatography resulted in peptide fractions of reduced ACE-inhibitory and antioxidant activities. The hydroxyl radical scavenging and reduction potential of HB-IV were enhanced, whereas ACE-inhibitory and metal-chelating activities were reduced following SGID. A total of 145 peptide sequences were identified from HB-IV, of which 137 peptides were novel to the BIOPEP database. The results suggested that the bioactive peptides isolated from the heads and bones of hybrid groupers could be used as functional foods/ingredients with potential ACE-inhibitory and antioxidant effects.
  12. Budhathoki M, Campbell D, Belton B, Newton R, Li S, Zhang W, et al.
    Foods, 2022 Dec 14;11(24).
    PMID: 36553785 DOI: 10.3390/foods11244043
    Asia accounts for over 70% of total global aquatic food consumption, but aquatic food consumption behaviours and attitudes among Asian consumers are poorly documented and understood. This paper synthesises literature on factors influencing aquatic food consumption behaviour in Asia and the potential to support transitions toward more sustainable food consumption patterns. We identified 113 studies for inclusion in a scoping review, and identified five clusters of publications: (1) product attributes, availability, and accessibility (24% of publications); (2) willingness to pay for aquatic foods (25%); (3) psychosocial factors (e.g., attitudes and subjective norms) (17%); (4) sociodemographic and lifestyle factors (21%); and (5) miscellaneous factors, including food safety and social status (13%). This study indicates that multiple interacting factors influence aquatic food consumption behaviours among Asian consumers, among which price is central. Knowledge of, and attitudes toward, the perceived quality and safety of aquatic foods were identified as important but were mediated by household characteristics. Sustainable production practices, country of origin, and ecolabels were found to be less influential on consumption behaviour. We found that improving consumers' knowledge and attitudes about the quality and safety of aquatic foods might positively influence aquatic food consumption behaviour. Future multidisciplinary research is required to better understand interactions among the multiple factors that influence Asian consumers' aquatic food consumption behaviour.
  13. Ji Y, Lan D, Wang W, Goh KM, Tan CP, Wang Y
    Foods, 2022 Dec 16;11(24).
    PMID: 36553815 DOI: 10.3390/foods11244073
    With the prevalence of edible diacylglycerol (DAG) oil, which is beneficial to human, the generation of 3-monochloropropanediol esters (3-MCPDE) and glycidyl esters (GE) as well as the stability of physical properties during heat-induced processing still need to be explored. In this study, the experiment used olive-based edible oil with different contents of DAG (40, 60, and 80%) to make crackers and fry chicken. They were heated at 160 and 180 °C to determine the changes in 3-MCPDE and GE, the crackers’ hardness and gumminess, and the physical properties of the oil. During baking and frying, 3-MCPDE decreased, while the content of GE slightly increased with the prolonged heating duration. Finally, 3-MCPDE and GE were lower than 1.25 mg/kg and 1.00 mg/kg, respectively. The AV increased proportionally as duration increased and POV was below 0.30 g/100 g. In general, the changes in 3-MCPDE and GE were related to the heating temperature and duration, and not significantly (p > 0.05) related to the content of DAG.
  14. Tirta GD, Martin L, Bani MD, Kho K, Pramanda IT, Pui LP, et al.
    Foods, 2022 Dec 28;12(1).
    PMID: 36613381 DOI: 10.3390/foods12010165
    Pediococcus acidilactici has gained research and commercial interest due to its outstanding probiotic properties, yet its survival during storage and consumption requires improvement. This study aims to enhance P. acidilactici survival using spray drying encapsulation. Different inlet air temperatures (120 °C, 150 °C, and 170 °C) and whey protein isolate (WPI):gum arabic (GA) ratios (1:1, 3:1, 1:3) were tested. Cell viability was significantly (p < 0.05) affected by the inlet temperature but not the WPI:GA ratio. Increasing the inlet temperature to 170 °C significantly decreased P. acidilactici viability by 1.36 log cycles, from 8.61 log CFU/g to 7.25 log CFU/g. The inlet temperature of 150 °C resulted in a powder yield (63.12%) higher than at 120 °C (58.97%), as well as significantly (p < 0.05) lower moisture content (5.71%) and water activity (aw 0.21). Viable cell counts in all encapsulated P. acidilactici were maintained at 5.24−6.75 log CFU/g after gastrointestinal tract (GIT) simulation, with WPI:GA of 3:1 and inlet temperature 150 °C having the smallest log reduction (0.3 log cycles). All samples containing different WPI:GA ratios maintained sufficient viability (>7 log CFU/g) during the first three weeks of storage at 25 °C. These results could provide insights for further developing P. acidilactici as commercial probiotic products.
  15. Li F, Lv Z, Zhong Z, Mao L, Chua LS, Xu L, et al.
    Foods, 2023 Jan 28;12(3).
    PMID: 36766095 DOI: 10.3390/foods12030567
    Aspergillus niger is one of the major pathogenic fungi causing postharvest grape decay. The development of antifungal agents is beneficial to reduce the loss of grapes during storage. The aim of this study was to investigate the antifungal mechanism of cyclosporin A (CsA). It was indicated that the rot development on grapes caused by A. niger was almost completely inhibited with CsA in vivo at a concentration of 200 mg/L. The transcriptomic analysis revealed that the expression levels of genes involved in rRNA processing and ribosome biogenesis were down-regulated, whereas those related to β-glucosidases and chitinases were up-regulated. The results implied that CsA may disturb rRNA and ribosome formation to obstruct protein synthesis, accelerate chitin and glucan degradation to destruct cell walls, and ultimately reduce postharvest decay caused by A. niger in grapes. This study evaluated the potential of CsA as a grape preservative and provided new insights into the mechanisms underlying the molecular response in A. niger with the treatment of CsA.
  16. Lim SH, Chin NL, Sulaiman A, Tay CH, Wong TH
    Foods, 2023 Jan 31;12(3).
    PMID: 36766121 DOI: 10.3390/foods12030592
    The safety, shelf life, and quality of fresh cow milk treated using industrial High-Pressure Processing (HPP) treatment at 600 MPa for 10 min was studied to identify the novelty of this non-thermal technology in milk processing. Changes in microbiological and physicochemical properties, including nutritional values of vitamins and amino acid profiles, were measured for a 60-day storage period at 6 °C +/- 1 °C. The HPP treatment produced milk that met all microbial safety requirements and exhibited a shelf life beyond 60 days in a hot and humid region. High physicochemical stability was achieved, with consistent pH and undetectable titratable acidity. The HPP treatment successfully retained all vitamins and minerals, including calcium (99.3%), phosphorus (99.4%), and magnesium (99.1%). However, the 60-day storage caused some degradation of Vitamin A (25%), B3 (91%), B5 (35%), B6 (80%), and C (85%), and minerals, including potassium (5%) and zinc (18%) when compared with fresh milk. This research has shown that the adoption of advanced treatment with HPP is very beneficial to the dairy industry in preserving milk quality in terms of its physicochemical and nutritional properties and extending its storage shelf life beyond 60 days.
  17. Gil N, Quinteros G, Blanco M, Samsuri S, Amran NA, Orellana-Palma P, et al.
    Foods, 2023 Feb 15;12(4).
    PMID: 36832909 DOI: 10.3390/foods12040836
    Block freeze concentration (BFC) is considered an emerging technology which allows the acquiring of high quality organoleptic products, due to the low temperatures employed. In this study we have outlined how the vacuum-assisted BFC of whey was investigated. The effects of vacuum time, vacuum pressure, and the initial solids concentration in whey were studied. The results obtained show that the three variables significantly affect each of the following parameters analysed: solute yield (Y) and concentration index (CI). The best Y results were obtained at a pressure of 10 kPa, 7.5 °Bx, and 60 min. For CI parameter, the highest values were given at 10 kPa, 7.5 °Bx, and 20 min, respectively. In a second phase, by applying the conditions that provide higher solute yield to three different types of dairy whey, Y values of 70% or higher are reached in a single step, while that the CI of lactose are higher than those of soluble solids. Therefore, it is possible to recover, in a single step, at least 70% of the lactose contained in the initial whey samples. This suggests that vacuum-assisted BFC technology may be an interesting alternative for the recovery of lactose contained in whey.
  18. Zainal Arifen ZN, Shahril MR, Shahar S, Mohamad H, Mohd Yazid SFZ, Michael V, et al.
    Foods, 2023 Mar 14;12(6).
    PMID: 36981160 DOI: 10.3390/foods12061234
    Despite growing evidence of increased saturated and trans fat contents in street foods, little is known about their fatty acid (FA) compositions. This study aimed to analyse the saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and trans fatty acids (TFAs) content of 70 selected and most commonly available street foods in Malaysia. The street foods were categorised into main meals, snacks, and desserts. TFAs were not detected in any of the street foods. Descriptively, all three categories mainly contained SFAs, followed by MUFAs, and PUFAs. However, the one-way ANOVA testing showed that the differences between each category were insignificant (p > 0.05), and each FA was not significantly different (p > 0.05) from one to another. Nearly half of the deep-fried street foods contained medium to high SFAs content (1.7 g/100 g-24.3 g/100 g), while the MUFAs were also high (32.0-44.4%). The Chi-square test of association showed that the type of preparation methods (low or high fat) used was significantly associated (p < 0.05) with the number of SFAs. These findings provide valuable information about fat composition in local street foods for the Malaysian Food Composition Database and highlight the urgency to improve nutritional composition.
  19. Shen Q, Zeng X, Kong L, Sun X, Shi J, Wu Z, et al.
    Foods, 2023 Apr 01;12(7).
    PMID: 37048306 DOI: 10.3390/foods12071485
    Nitrite is a common color and flavor enhancer in fermented meat products, but its secondary amines may transfer to the carcinogen N-nitrosamines. This review focuses on the sources, degradation, limitations, and alteration techniques of nitrite. The transition among NO3- and NO2-, NH4+, and N2 constitutes the balance of nitrogen. Exogenous addition is the most common source of nitrite in fermented meat products, but it can also be produced by contamination and endogenous microbial synthesis. While nitrite is degraded by acids, enzymes, and other metabolites produced by lactic acid bacteria (LAB), four nitrite reductase enzymes play a leading role. At a deeper level, nitrite metabolism is primarily regulated by the genes found in these bacteria. By incorporating antioxidants, chromogenic agents, bacteriostats, LAB, or non-thermal plasma sterilization, the amount of nitrite supplied can be decreased, or even eliminated. Finally, the aim of producing low-nitrite fermented meat products is expected to be achieved.
  20. Yap CK, Al-Mutairi KA
    Foods, 2023 May 11;12(10).
    PMID: 37238781 DOI: 10.3390/foods12101964
    The present field-based study aimed to determine the levels of six potentially toxic metals (PTM)s (Cd, Cu, Fe, Ni, Pb, and Zn determined using a flame atomic-absorption spectrophotometer) using transplanted green-lipped mussel Perna viridis from a polluted site at Kampung Pasir Puteh (KPP) to unpolluted sites at Kampung Sungai Melayu (KSM) and Sungai Belungkor (SB) in the Johore Straits (SOJ), and to estimate the human health risks of the PTMs after the depuration periods. Interestingly, after 10 weeks of depuration in the two unpolluted sites, there were 55.6-88.4% and 51.3-91.7% reductions of the six PTMs after transplantation from KPP to SB and KSM, respectively. Lower risks of health assessments were recorded and judged on the present findings of significantly (p < 0.05) lower levels of safety guidelines, significantly (p < 0.05) lower values of target hazard quotient, and significantly (p < 0.05) lower values of estimated weekly intake, of all the six PTMs after 10 weeks of depuration of the transplanted polluted mussels to the two unpolluted sites in the SOJ. Thus, further reducing the noncarcinogenic risks of the PTMs to the consumers. From an aquacultural point of view, this depuration technique can be recommended to reduce the health risks of PTMs to mussel consumers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links