Displaying publications 81 - 100 of 114 in total

Abstract:
Sort:
  1. Vinoth S, Subramani K, Ong WJ, Sathish M, Pandikumar A
    J Colloid Interface Sci, 2021 Feb 15;584:204-215.
    PMID: 33069019 DOI: 10.1016/j.jcis.2020.09.071
    This work demonstrates a high-performance hybrid asymmetric supercapacitor (HASC) workable in very high current density of 30 A g-1 with in-situ pyrolytic processed sulfur-doped graphitic carbon nitride/cobalt disulfide (S-gC3N4/CoS2) materials and bio-derived carbon configuration and achievement of high electrochemical stability of 89% over 100,000 cycles with the coulombic efficiency of 99.6%. In the electrochemical studies, the S-gC3N4/CoS2-II electrode showed a high specific capacity of 180 C g-1 at 1 A g-1 current density in the half-cell configuration. The HASC cell was fabricated using S-gC3N4/CoS2-II material and orange peel derived activated carbon as a positive and negative electrode with a maximum operating cell potential of 1.6 V, respectively. The fabricated HASC delivered a high energy density of 26.7 Wh kg-1 and power density of 19.8 kW kg-1 in aqueous electrolyte. The prominent properties in specific capacity and cycling stability could be attributed to the CoS2 nanoparticles engulfed into the S-gC3N4 framework which provides short transport distance of the ions, strong interfacial interaction, and improving structural stability of the S-gC3N4/CoS2-II materials.
  2. Lin XR, Kwon E, Hung C, Huang CW, Oh WD, Lin KA
    J Colloid Interface Sci, 2021 Feb 15;584:749-759.
    PMID: 33176929 DOI: 10.1016/j.jcis.2020.09.104
    As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.
  3. Wang Z, Li P, Ma K, Chen Y, Yan Z, Penfold J, et al.
    J Colloid Interface Sci, 2021 Mar 15;586:876-890.
    PMID: 33309145 DOI: 10.1016/j.jcis.2020.10.122
    HYPOTHESIS: The α-sulfo alkyl ester, AES, surfactants are a class of anionic surfactants which have potential for improved sustainable performance in a range of applications, and an important feature is their enhanced tolerance to precipitation in the presence of multivalent counterions. It is proposed that their adsorption properties can be adjusted substantially by changing the length of the shorter alkyl chain, that of the alkanol group in the ester.

    EXPERIMENTS: Surface tension and neutron reflectivity have been used to investigate the variation in the adsorption properties with the shorter alkyl chain length (methyl, ethyl and propyl), the impact of NaCl on the adsorption, the tendency to form surface multilayer structures in the presence of AlCl3, and the effects of mixing the methyl ester sulfonate with the ethyl and propyl ester sulfonates on the adsorption.

    FINDINGS: The variations in the critical micelle concentration, CMC, the adsorption isotherms, the saturation adsorption values, and the impact of NaCl illustrate the subtle influence of varying the shorter alkyl chain length of the surfactant. The non-ideal mixing of pairs of AES surfactants with different alkanol group lengths of the ester show that the extent of the non-ideality changes as the difference in the alkanol length increases. The surface multilayer formation observed in the presence of AlCl3 varies in a complex manner with the length of the short chain and for mixtures of surfactants with different chains lengths.

  4. Samsudin MFR, Ullah H, Tahir AA, Li X, Ng YH, Sufian S
    J Colloid Interface Sci, 2021 Mar 15;586:785-796.
    PMID: 33198982 DOI: 10.1016/j.jcis.2020.11.003
    Herein, we performed an encyclopedic analysis on the photoelectrocatalytic hydrogen production of BiVO4/g-C3N4 decorated with reduced graphene oxide (RGO) or graphene quantum dots (GQDs). The differences between RGO and GQDs as an electron mediator was revealed for the first time in the perspective of theoretical DFT analysis and experimental validation. It was found that the incorporation of GQDs as an electron mediator promotes better photoelectrocatalytic hydrogen performance in comparison to the RGO. The addition of GQD can significantly improve the activity by 25.2 and 75.7% in comparison to the BiVO4/RGO/g-C3N4 and binary composite samples, respectively. Correspondingly, the BiVO4/GQD/g-C3N4 attained the highest photocurrent density of 19.2 mA/cm2 with an ABPE of 0.57% without the presence of any sacrificial reagents. This enhancement is stemming from the low photocharge carrier transfer resistance which was further verified via DFT study. The DFT analysis revealed that the BiVO4/GQD/g-C3N4 sample shared their electronic cloud density through orbital hybridization while the BiVO4/RGO/g-C3N4 sample show less mutual sharing. Additionally, the charge redistribution of the GQDs-composite at the heterostructure interface articulates a more stable and stronger heterojunction than the RGO-composite. Notably, this study provides new insights on the effect of different carbonaceous materials (RGO and GQDs) which are often used as an electron mediator to enhance photocatalytic activity.
  5. Nguyen HT, Lee J, Kwon E, Lisak G, Thanh BX, Oh WD, et al.
    J Colloid Interface Sci, 2021 Jun;591:161-172.
    PMID: 33601102 DOI: 10.1016/j.jcis.2021.01.108
    While Cobalt nanoparticles (Co NPs) are useful for catalytic Oxone activation, it is more advantageous to embed/immobilize Co NPs on nitrogen-doped carbon substrates to provide synergy for enhancing catalytic performance. Herein, this study proposes to fabricate such a composite by utilizing covalent organic frameworks (COF) as a precursor. Through complexation of COF with Co, a stable product of Co-complexed COF (Co-COF) can be synthesized. This Co-COF is further converted through pyrolysis to N-doped carbon in which cobaltic NPs are embedded. Owing to its well-defined structures of Co-COF, the pyrolysis process transforms COF into N-doped carbon with a bubble-like morphology. Such Co NP-embedded N-doped carbon nanobubbles (CoCNB) with pores, magnetism and Co, shall be a promising catalyst. Thus, CoCNB shows a much stronger catalytic activity than commercial Co3O4 NPs to activate Oxone to degrade toxic Amaranth dye (AMD). CoCNB-activated Oxone also achieves a significantly lower Ea value of AMD degradation (i.e., 27.9 kJ/mol) than reported Ea values in previous literatures. Besides, CoCNB is still effective for complete elimination of AMD in the presence of high-concentration NaCl and surfactants, and CoCNB is also reusable over five consecutive cycles.
  6. Tahir M, Tahir B
    J Colloid Interface Sci, 2021 Jun;591:20-37.
    PMID: 33588310 DOI: 10.1016/j.jcis.2021.01.099
    Constructing efficient structured materials for artificial photosynthesis of CO2 is a promising strategy to produce renewable fuels in addition of mitigating greenhouse effect. In this work, 2D porous g-C3N4 (PCN) coupled exfoliated 3D Ti3C2TA MXene (TiC) nanosheets with TiO2 NPs in-situ growth was constructed in a single step through HF treatment approach. The different exfoliated TiC structures were successfully synthesized for adjusting HF etching time (24 h, 48 h and 96 h). With growing etchant time from 24 to 96 h, the amount of TiO2 produced was increased, but it has adverse effects on CO and CH4 production rate. The maximum production rates for CO and CH4 of 317.4 and 78.55 µmol g-1 h-1 were attained when the 10TiC-48/PCN was employed than using TiC-24/PCN, TiC-96/PCN and PCN composite samples, respectively. The performance of 10TiC-48/PCN composite for CO and CH4 evolution were 9.9 and 6.7 folds higher than using pristine PCN sample, respectively. The possible mechanism is assigned to porous structure with intimate contact enabling efficient charge carrier separation with the role of TiO2 NPs to work as a bridge to transport electrons towards MXene surface. Among the reducing agents, water was favorable for CO evolution, whereas, methanol-water system promoted CH4 production. All these findings confirm that heterojunction formation facilitates charges separation and can be further used in solar energy relating application.
  7. Vinoth S, Ong WJ, Pandikumar A
    J Colloid Interface Sci, 2021 Jun;591:85-95.
    PMID: 33592528 DOI: 10.1016/j.jcis.2021.01.104
    Cobalt incorporated sulfur-doped graphitic carbon nitride with bismuth oxychloride (Co/S-gC3N4/BiOCl) heterojunction is prepared by an ultrasonically assisted hydrothermal treatment. The heterojunction materials have employed in photoelectrochemical (PEC) water splitting. The PEC activity and stability of the materials are promoted by constructing an interface between the visible light active semiconductor photocatalyst and cocatalysts. The photocurrent density of Co-9% S-gC3N4/BiOCl has attained 393.0 μA cm-2 at 1.23 V vs. RHE, which is 7-fold larger than BiOCl and ~3-fold higher than 9% S-gC3N4/BiOCl. The enhanced PEC activity can be attributed to the improved electron-hole charge separation and the boosted charge transfer is confirmed by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analysis. The fabricated Co/S-gC3N4/BiOCl nanohybrid material has exhibited high stability of up to 10,800 s (3 h) at 1.23 V vs. RHE during PEC water splitting reaction and the obtained photo-conversion efficiency is 3.7-fold greater than S-gC3N4/BiOCl and 17-fold higher than BiOCl. The FESEM and HRTEM images have revealed the formation of heterojunction interface between S-gC3N4 and BiOCl and the elemental mapping has confirmed the presence of cobalt over S-gC3N4/BiOCl. The heterojunction interface has facilitated the photo-excited charge separation and transport across the electrode/electrolyte interface and also the flat-band potential, which is confirmed by Mott-Schottky analysis.
  8. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
  9. Velmurugan S, C-K Yang T, Ching Juan J, Chen JN
    J Colloid Interface Sci, 2021 Aug 15;596:108-118.
    PMID: 33838324 DOI: 10.1016/j.jcis.2021.03.083
    Herein this research, a visible light active tungsten oxide/copper manganate (WO3/CuMnO2) p-n heterojunction nanocomposite was prepared and has been applied for a signal on photoelectrochemical sensing of antibiotic nitrofurazone (NFZ). Firstly, the n-WO3 nanotiles were synthesized from the cetrimonium bromide (CTAB) assisted hydrothermal method and the p-CuMnO2 nanoparticles were synthesized by using the ultrasound-assisted hydrothermal method. The photoelectrochemical NFZ sensing performance of WO3/CuMnO2 nanocomposite was 1.9 times higher than that of as-synthesized pure WO3 nanotiles. The resulting higher photoelectrochemical performance of the nanocomposite is due to more visible light absorption ability and synergy from p-n heterojunction formation. The designed WO3/CuMnO2 nanocomposite sensor gives satisfactory photocurrent signals for the detection of NFZ in the range of 0.015-32 μM with the detection limit (LOD) of 1.19 nM. The practical applicability of the nanocomposite sensor was monitored in pork liver and tap water samples.
  10. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
  11. Rusmin R, Sarkar B, Mukhopadhyay R, Tsuzuki T, Liu Y, Naidu R
    J Colloid Interface Sci, 2021 Sep 22;608(Pt 1):575-587.
    PMID: 34628317 DOI: 10.1016/j.jcis.2021.09.109
    Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g-1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption-desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.
  12. Beh CY, Cheng EM, Mohd Nasir NF, Khor SF, Eng SK, Abdul Majid MS, et al.
    J Colloid Interface Sci, 2021 Oct 15;600:187-198.
    PMID: 34015511 DOI: 10.1016/j.jcis.2021.03.158
    An investigation on relationship among the physicochemical, optical and dielectric properties of the hydroxyapatite/cornstarch (HA/Cs) composites with the starch proportion of 30, 40, 50, 60, 70, 80 and 90 wt% is presented in this work. The HA/Cs composites have been characterized via FTIR, XRD, DRS and impedance analyzer. This work depicts that the strong interaction is exhibited between the hydroxyapatite nanoparticles and starch as the starch proportion increases. This increment trend results in the higher crystallinity of the HA/Cs composites. The highly crystallized HA/Cs with hydroxyapatite nucleation center presents low optical properties (diffuse reflectance and optical band gap energy). The HA/Cs composite with 80 wt% starch proportion (H2C8) show higher dielectric properties (dielectric constant, loss factor and conductivity) due to the stronger interfacial interaction and close-packed HA/Cs crystalline structure. The relationship among the physicochemical, optical and dielectric properties of the HA/Cs composite is studied in this work for potential of instrumentation design.
  13. Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, et al.
    J Colloid Interface Sci, 2021 Nov;601:474-485.
    PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147
    HYPOTHESIS: Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures.

    EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.

  14. Lin JY, Lee J, Oh WD, Kwon E, Tsai YC, Lisak G, et al.
    J Colloid Interface Sci, 2021 Nov 15;602:95-104.
    PMID: 34118608 DOI: 10.1016/j.jcis.2021.05.098
    Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.
  15. Wong KC, Goh PS, Suzaimi ND, Ng ZC, Ismail AF, Jiang X, et al.
    J Colloid Interface Sci, 2021 Dec;603:810-821.
    PMID: 34237599 DOI: 10.1016/j.jcis.2021.06.156
    Membrane-based separation is an appealing solution to mitigate CO2 emission sustainably due to its energy efficiency and environmental friendliness. Attributed to its excellent separation endowed by nanomaterial incorporation, nanocomposite membrane is rigorously developed. This study explored the feasibility of boron nitride (BN) embedment and changes to formation mechanism of ultrathin selective layer of thin film nanocomposite (TFN) are investigated. The effects of amine-functionalization on nanosheet-polymer interaction and CO2 separation performance are also identified. Participation of nanosheets during interfacial polymerization reduced the crosslinking of selective layer, hence, improved TFN permeance while the formation of contorted diffusion paths by the nanosheets favors transport of small gases. Amine-functionalization enhanced the nanosheet-polymer interaction and elevated the membrane affinity towards CO2 which led to enhanced CO2 selectivity. The best TFN prepared in this study exhibited 37% and 20% increment in permeability and selectivity, respectively with respect to neat thin film composite (TFC). It is found that the CO2 separation performance of BN incorporated TFN is on par with many non-porous nanosheet-incorporated TFNs reported in literatures. The transport and barrier effects of BN and functionalized BN are discussed in detail to provide further insights into the development of commercially attractive CO2 selective TFN membranes.
  16. Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, et al.
    J Colloid Interface Sci, 2021 Dec 15;604:91-103.
    PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173
    Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
  17. Deen I, Selopal GS, Wang ZM, Rosei F
    J Colloid Interface Sci, 2022 Feb;607(Pt 1):869-880.
    PMID: 34536940 DOI: 10.1016/j.jcis.2021.08.199
    Coatings with bioactive properties play a key role in the success of orthopaedic implants. Recent studies focused on composite coatings incorporating biocompatible elements that can increase the nucleation of hydroxyapatite (HA), the mineral component of bone, and have promising bioactive and biodegradable properties. Here we report a method of fabricating composite collagen, chitosan and copper-doped phosphate glass (PG) coatings for biomedical applications using electrophoretic deposition (EPD). The use of collagen and chitosan (CTS) allows for the co-deposition of PG particles at standard ambient temperature and pressure (1 kPa, 25 °C), and the addition of collagen led to the steric stabilization of PG in solution. The coating composition was varied by altering the collagen/CTS concentrations in the solutions, as well as depositing PG with 0, 5 and 10 mol% CuO dopant. A monolayer of collagen/CTS containing PG was obtained on stainless steel cathodes, showing that deposition of PG in conjunction with a polymer is feasible. The mass of the monolayer varied depending on the polymer (collagen, CTS and collagen/CTS) and combination of polymer + PG (collagen-PG, CTS-PG and collagen/CTS-PG), while the presence of copper led to agglomerates during deposition at higher concentrations. The deposition yield was studied at different time points and showed a profile typical of constant voltage deposition. Increasing the concentration of collagen in the PG solution allows for a higher deposition yield, while pure collagen solutions resulted in hydrogen gas evolution at the cathode. The ability to deposit polymer-PG coatings that can mimic native bone tissue allows for the potential to fabricate orthopaedic implants with tailored biological properties with lower risk of rejection from the host and exhibit increased bioactivity.
  18. Tiong ACY, Tan IS, Foo HCY, Lam MK, Mahmud HB, Lee KT
    J Colloid Interface Sci, 2022 Feb;607(Pt 2):1131-1141.
    PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042
    The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
  19. Ali N, Abbas S, Cao Y, Fazal H, Zhu J, Lai CW, et al.
    J Colloid Interface Sci, 2022 Feb 07;615:707-715.
    PMID: 35168019 DOI: 10.1016/j.jcis.2022.02.012
    Solar steam generation has great potential in alleviating freshwater crises, particularly in regions with accessible seawater and abundant insolation. Inexpensive, efficient, and eco-friendly photothermal materials are desired to fabricate sunlight-driven evaporation devices. Here, we have designed an economical strategy to fabricate a high-performance wood-based solar steam generation device. In current study, 3D-hierarchical Cu3SnS4 has been loaded on wood substrates of variable sizes via an in-situ solvothermal method. Considering the water transportation capacity and thermal insulation property of wood, an enhanced light absorption was achieved by a uniform coating of Cu3SnS4 on the inside and outside of the 3D porous structure of the wood. Thanks for the synergistic effect of Cu3SnS4 and wood substrate, the obtained composite endorsed high-performance solar steam generation with a steam generation efficiency of 90% and an evaporation rate as high as 1.35 kg m-2h-1 under one sun.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links